

DAE Tools Software
Overview

D.D. Nikolić
Updated: 26 March 2019
DAE Tools Project, http://www.daetools.com

What is DAE Tools?

Equation-based Object-oriented modelling,
simulation, and optimisation software.

Areas of application:
– Initially: chemical process industry (mass, heat and

momentum transfers, chemical reactions, separation
processes, thermodynamics, electro-chemistry)
– Nowadays: multi-domain

Free/Open source software (GNU GPL).

Cross-platform (GNU/Linux, Windows, MacOS).

Multiple architectures (32/64 bit x86, ARM, ...).
Convective heat-transfer

DAE Tools is not:

A modelling language nor a collection of numerical libraries.

A higher level structure – an architectural design of
interdependent software components providing an API for:
– Model development/specification
– Activities on developed models: simulation, sensitivity

analysis, optimisation, and parameter estimation
– Processing of the results
– Report generation
– Code generation, co-simulation & model exchange

DAE Tools is:

What is DAE Tools?

Cahn-Hilliard equation

What can be done with DAE Tools?

Modelling of complex multiscale/multiphysics
processes/phenomena with complex schedules.

Single model definition as a basis for all activities:

– Simulation (steady-state & transient)
– Optimisation (NLP/MINLP)
– Sensitivity Analysis (local and global)
– Parameter Estimation
– Code-generation & co-simulation

DAE Tools Model

Simulation Optimisation

Code-generation Parameter Estimation

Sensitivity Analysis

Types of systems that can be modelled

Initial value problems of implicit form:
– Described by a system of linear, non-linear and partial-

differential equations
– Continuous with some elements of event-driven

systems (i.e. discontinuous equations, state transition
networks, discrete events)
– Steady-state or dynamic
– With lumped or distributed parameters (FD, FV, FE)
– Index-1 DAE systems only

Steady-State

Dynamic

Continuous

With Lumped Parameters

Event-Driven

With Distributed Parameters

The Hybrid Approach
DAE Tools apply a hybrid approach between
modelling and general purpose programming
languages.

The hybrid approaches combines the strengths of
both approaches:
– Developed in C++ for performance
– Key modelling concepts provided by the API
– Python wrappers for model development,

execution of simulations and all other tasks

Why YET ANOTHER modelling software?

The combination of the features of modelling and general-
purpose programming languages in the Hybrid approach
provide the following capabilities:

‒ Runtime model generation
‒ Runtime simulation set-up
‒ Complex schedules
‒ Interoperability with the third-party software
‒ Suitability for embedding and use as a web

application or software as a service
‒ Code-generation, model exchange and co-simulation

Parallel-plate reactor with an active surface

Equation-based (acausal) approach

– Equations given in an implicit form (as a residual)
– Input-output causality is not fixed
– Increased model re-use
– Different simulation scenarios based on a single

model by specifying different degrees of freedom

Programming paradigms

Object-oriented approach

– Everything is an object (variables, equations, models ...)
– All objects can be manipulated in runtime
– All C++/Python object-oriented concepts supported
– The hierarchical model decomposition

Single definition (acausal equation):

But, three simulation scenarios:

Multiphysics capabilities

Model multiple simultaneous physical phenomena using the finite
difference, finite volume and finite element methods
– DAE Tools utilise deal.II library to generate a set of differential

equations for given inputs (mesh, FE space, weak form, BCs, ...)
– Unique features:
– Generate several non-linear FE systems in the same model
– Mix with the other equations in the model (i.e. FV)
– Use DAE Tools variables to set boundary conditions, evaluate

source terms and non-linear coefficients
– Impose constraints and add any number of auxiliary equations
– Explore tutorials models (Cahn-Hilliard equation, convective heat

tranfer, flow in porous media, ...) Flow in porous media

Parallel computation

– The shared-memory parallel programming model
– Export to OpenCS models for simulation on distributed

memory systems
– OpenCS utlised for parallel evaluation of model equations
– OpenMP: general purpose processors and manycore devices
– OpenCL: streaming processors (GPU, FPGA) and

heterogeneous systems (CPU+GPU, CPU+FPGA)
– Assembly of Finite Element systems (OpenMP)
– Solution of systems of linear equations (SuperLU_MT, Pardiso

and Intel Pardiso solvers)
– Global Sensitivity Analysis (multiprocessing.Pool)

Transient Stokes flow driven by the
differences in buoyancy

Sensitivity analysis

– Local sensitivity analysis (derivative-based)
– Global sensitivity analysis (SALib library):

– 1st and 2nd order sensitivities and confidence intervals
– Total sensitivity indices and confidence intervals
– Scatter plots
– Methods available:
– Method of Morris (elementary effect method)
– FAST (variance-based)
– Sobol (variance-based)
– Simulations performed in parallel (multiprocessing.Pool) SA scatter plot

Code generation & co-simulation

– Code-generation
– Modelica
– gPROMS
– C99 (embedded systems)
– C++ MPI (distributed systems)
– Co-simulation
– Matlab MEX-functions
– Simulink user-defined S-functions
– Functional Mockup Interface (FMI) for Co-Simulation

DAE Tools Model

C99

C++ (MPI)

Modelica

gPROMS

FMU

Matlab MEX-function

Simulink S-function

code generation co-simulation

Software as a service

– Web service with the RESTful API
– DAE Tools simulations (daetools_ws)
– DAE Tools FMU objects (daetools_fmi_ws)
– Language independent

(JavaScript, Python, C++, ...)
– Benefits:
– Application servers
– Individual simulations as a web service
– Attractive Graphical User Interface

Additional features

– Automatic differentiation (ADOL-C)
– Large number of the state-of-the-art solvers:
– DAE (Sundials IDAS)
– LA (SuperLU, SuperLU_MT, Trilinos Amesos/AztecOO,

Pardiso, Intel Pardiso)
– (MI)NLP (Ipopt, Bonmin, NLopt)

– Generation of model reports
(XML + MathML, Latex)
– Export of simulation results to several file formats

(csv, Matlab, Excel, json, xml, HDF5, Pandas, VTK) Diffusion and reaction in a catalyst flake

Code verification

– The formal code verification techniques applied
to test almost all aspects of the software
– The code verification methods used:
– The Method of Exact Solutions (MES)
– The Method of Manufactured Solutions (MMS)
– The most rigorous acceptance criteria used:
– Percent Error
– Consistency
– Order-of-accuracy Normalised global error and order-of-accuracy

Applications & case studies

– Chemical engineering: chemical reactions, separations...
– Finite Elements: heat transfer, Cahn-Hiliard equation, ...
– Multi-scale problems: multiphase porous electrodes, phase

separating hydroxide-exchange fuel cells, PSA
– Sensitivity analysis: thermal analysis of a batch reactor and

exothermic reaction
– Optimisation: Large-scale Constrained Optimisation Problem

Set (COPS)
– Domain Specific Languages, Embedded simulators and

Web services: DAE Tools (daetools_ws), NineML Multi-scale model of phase-separating
battery electrodes

http://software.incf.org/software/nineml

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

