Open Compute Stack (OpenCS) Overview

D.D. Nikolić Updated: 26 March 2019 DAE Tools Project, http://www.daetools.com/opencs

What is OpenCS?

A framework for:

- **1. Equation-based modelling** (large-scale ODE/DAE systems)
- 2. Parallel evaluation of equations
- 3. Model exchange
- 4. Parallel simulation on:
 - Shared memory systems
 - Distributed memory systems

Multi-domain applications Free/Open source software **Cross-platform**

Workstation

Network File System

Distributed Memory System

Use case scenarios

- 1. Development of large-scale models (C++)
- 2. Parallel evaluation of model equations
- 3. Universal parallel simulations on shared and distributed memory systems
- 4. Model export from 3rd-party simulators for:
 - Model exchange
 - (i.e. hybrid CPU+GPU and CPU+FPGA clusters)
 - Benchmark between solvers and simulators Benchmark between individual computing devices Benchmark between HPC systems

Model specification

- Direct implementation in C++
- **Export** from 3rd-party simulators

Model exchange

- OpenCS models stored as files in a platform-independent binary format
- The OpenCS API:
 - Loading the models into a host
 - Interface to ODE/DAE solvers
 (i.e. evaluation of equations)

- **Platform-independent description of model equations**
- **Reverse Polish (postfix) notation (Compute Stack) Evaluation using a Compute Stack Machine** Advantages:
- Equations as an array of binary data Direct evaluation on all computing platforms - Specialised hardware for evaluation (i.e. GPU, FPGA) - No additional processing nor compilation steps

N _{cs}	••••	-
opCode	opCode	opC
data	data	da

- **Parallel evaluation of model equations**
- Systems of equations evaluated using the **Compute Stack Evaluator interface:**
- OpenMP for general purpose processors (multi-core CPUs, Xeon Phi)
- **OpenCL** for: streaming processors (GPU, FPGA) heterogeneous systems (CPU+GPU/FPGA)

Multi-core CPU, Xeon Phi

GPU, FPGA

Parallel simulation on shared memory systems

- Single processing element
- Available computing hardware utilised for parallel evaluation of model equations:
 - Multi-core CPU, Xeon Phi
 - GPU, FPGA
 - Heterogeneous systems i.e. CPU+GPU, CPU+FPGA

Parallel simulation on distributed memory systems

- Multiple processing elements
- Software for simulation on shared memory systems as the main building block
- Partitioning using multiple balancing constraints
- Every processing element:
 - Integrates one ODE/DAE sub-system in time
 - Performs an inter-process data exchange

OpenCS benefits

- A single software for numerical solution of any ODE/DAE system of any size on all platforms
- The model specification contains only the **low-level model description** (created from any software)
- The model specification stored as files in a platform-independent binary format
- Model equations specified in a platform independent way as an array of binary data
- Equations can be evaluated on virtually all computing devices (including heterogeneous systems)
- Switching to a different computing platform for evaluation of equations as an input parameter

The key OpenCS concepts

Compute Stack:

Compute Stack Machine: Compute Stack Evaluator: Compute Stack Model: Compute Stack Differential Equations Model: Compute Stack Simulator:

- The Reverse Polish (postfix) notation expression stack to describe and store in computer memory equations of any type and any size
- A stack machine used to evaluate a single equation using LIFO queues
- An interface for parallel evaluation of systems of equations
- Data structure that holds the low-level model specification
- A common interface for ODE/DAE solvers for integration of ODE/DAE systems in time
- Sequential/parallel simulator for general ODE/DAE systems
- **Compute Stack Model Builder:** A common interface for creation of ODE/DAE Compute Stack models