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ABSTRACT8

In this work, a methodology for parallel numerical solution of general systems of non-linear
differential and algebraic equations (DAE) on distributed memory systems is proposed and
implemented. The methodology consists of the following parts: (1) an algorithm for trans-
formation of model equations into a data structure suitable for parallel evaluation on diverse
types of computing devices, (2) data structures for model specification, (3) an algorithm for
partitioning of general systems of equations, (4) an algorithm for inter-process data exchange,
and (5) simulation software for integration of general DAE systems in time. Model equations are
specified in a platform and programming language independent fashion as the postfix notation
expression stacks (Compute Stacks) that can represent any type of equations of any size and
be evaluated on virtually all computing devices. The model specification contains only the
low-level model description with the minimum information required for integration in time: (a) the
model structure (properties of model variables), (b) the model equations, (c) the sparsity pattern
(for evaluation of derivatives), and (d) the partition data (for inter-process data exchange).
This way, the model specification data structures are used as a simple platform-independent
binary interface for model exchange. The partitioning algorithm accepts four different balancing
constraints that can be used to precisely balance the computation and memory loads in critical
phases of the numerical solution. The central point is the generic simulation software which
runs on message passing multiprocessors and integrates arbitrary DAE systems in time. For
computationally intensive tasks the software utilises multi-level parallelism techniques such as
hybrid MPI/OpenMP and heterogeneous MPI/OpenCL: every processing element integrates a
DAE sub-system in time on a full-blown host processor and can optionally perform evaluation
of model equations using the OpenMP API on general purpose processors and the OpenCL
framework on streaming processors. Simulation inputs are specified in a generic fashion as
files in a binary (platform independent) format. The input files are generated by a modelling
software for each processing element and contain the serialised data structures with the model
specification. To illustrate its capabilities and limitations, the proposed methodology is applied
to a medium-scale transient two-dimensional phase separation process. Six different phases of
the numerical solution are analysed. Nine different strategies for load balancing are applied.
Simulation results, an overall performance and performance of individual phases, an efficiency
of the preconditioner, the quality of the load balancing prediction, and overheads due to the
load imbalance are discussed in details.
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INTRODUCTION40

Large scale systems of non-linear (partial-)differential and algebraic equations (DAE) are found41

in many engineering problems. Typically, such systems cannot be efficiently solved on shared42

memory systems due to the high memory and computation requirements and must be solved43

on distributed memory systems. Clusters of symmetric multiprocessors (SMP) are the most44

commonly used architecture for large scale simulations and the Message Passing Interface45

(MPI) is de facto a standard for distributed memory systems. Simulation on distributed memory46

systems is performed by partitioning the DAE system into a specified number of subsystems. The47

simulation is then run in parallel on a specified number of processing elements (PE) using the MPI48

interface, where each PE integrates one DAE subsystem in time and performs an inter-process49

communication to exchange the data between nodes.50

In general, the parallel simulation programs for this class of problems are developed using:51

(1) general-purpose programming languages such as C/C++ or FORTRAN and one of available52

suites for scientific applications such as SUNDIALS (Hindmarsh et al., 2005), Trilinos (Heroux53

et al., 2005) and PETSC (Balay et al., 2015),54

(2) libraries for Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) such55

as deal.II (Bangerth et al., 2007), libMesh (Kirk et al., 2006), and OpenFOAM (The OpenFOAM56

Foundation, 2018),57

(3) Computer Aided Engineering (CAE) software for Finite Element Analysis and Computational58

Fluid Dynamics such as HyperWorks (Altair, 2018), STAR-CCM+ and STAR-CD (Siemens,59

2018), COMSOL Multiphysics (COMSOL, Inc., 2018), ANSYS Fluent/CFX (Ansys, Inc., 2018)60

and Abaqus (Dassault Systemes, 2018).61

The suites for scientific applications (1) and FEA/CFD libraries (2) are mostly computational62

building blocks for discretisation (group 2) and numerical solution (group 1) of the systems of63

differential equations and require the end-user to develop the application programs. The Trilinos64

suite, apart from modules for discretisation and solution of systems of differential equations,65

provides modules for multi-physics problems and for formulating outer optimisation processes.66

In most cases, parallel simulations developed in C/C++/FORTRAN using one of the suites67

for scientific applications are optimised for a particular computing platform and often produce68

the fastest computation. Model equations are typically specified as user-supplied functions69

for evaluation of residuals and derivatives. However, the process is error prone - without the70

API/framework (such as the DAE Tools software, Nikolić, 2016) that provides the key modelling71

concepts (parameters, variables, domains, continuous and discontinuous equations, models, state72

transition networks etc.) it is difficult to keep track of the variable indexes (in particular for73

multi-scale models), manually specify expressions for analytical derivatives, manually partition74

the system and implement an inter-process communication.75

FEA/CFD libraries offer an Application Programming Interface (API) to assist in the process76

of pre-processing, discretisation of PDE, numerical solution and post-processing. However, many77

low-level tasks still must be done manually. On the other hand, CAE software offer a great degree78

of generality: all required tasks are performed (mostly) automatically through the graphical user79

interface. In addition, some of the commercial CAE suites such as Ansys CFX also support the80

solution of multi-physics problems by allowing the end-user to combine several single-physics81

models into a larger problem. In both approaches, model equations are represented by the data82

structures resulting from the discretisation process. On unstructured grids, the discretisation83

is performed using the Finite Element (FE) or Finite Volume (FV) methods and produces the84
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mass and stiffness matrices and load vectors. On structured grids, the discretisation is performed85

using the Finite Difference (FD) method and yields the stencil data (nodes arrangement and their86

coefficients). Parallel evaluation of model equations is carried out using matrix-vector/matrix-87

matrix operations or stencil codes available for all platforms. However, the general non-linear88

DAE systems cannot be represented in this way.89

The focus of this work is a methodology for parallel numerical solution of general systems90

of non-linear differential and algebraic equations on distributed memory systems. In contrast to91

problems that can be described by a single system of finite element/finite volume/finite difference92

equations the focus in this work is on DAE systems that might include mixed/multiple coupled93

FE/FV/FD equations with additional ordinary differential and algebraic equations. Such mixed94

systems of equations are often found in multi-scale models or models of chemical plants and95

typically cannot be represented using the methods above. For instance, a detailed model of a96

chemical process plant might include multiple systems with distributed parameters for individual97

unit operations which, depending on the unit type, utilise different discretisation methods. In98

addition, auxiliary differential and algebraic equations are required for the connectivity between99

units and evaluation of the plant performance.100

The methodology consists of several parts: (1) an algorithm for transformation of model101

equations into a data structure suitable for parallel evaluation on different computing platforms102

(the Compute Stack approach, Nikolić, 2018), (2) data structures for model specification that103

contain all information required for numerical solution such as: the model structure, the model104

equations, the sparsity pattern (for evaluation of derivatives), and the partition data (for inter-105

process data exchange), (3) an algorithm for partitioning of general systems of equations, (4)106

an algorithm for inter-process data exchange, and (5) a simulation software for integration of107

general DAE systems in time. The idea is to separate (simulator-dependent) generation of a108

system of equations (i.e. meshing, discretisation and system assembly) and partitioning of the109

system, typically performed only once, from its parallel (in general, simulator-independent)110

numerical solution which is computationally the most intensive task. While generation of the111

system of equations can be performed in different ways depending on the type of the problem and112

the method applied by a simulator, the numerical solution procedure requires only a low-level113

model description. For instance, the model description can be built using a modelling language114

or a CAE software utilising various discretisation methods. However, information required by115

DAE solvers are essentially identical: the data about the number of variables, their names, types,116

absolute tolerances and initial conditions, the functions for evaluation of residuals and derivatives,117

and the function for exchange of adjacent unknowns between processing elements. Therefore, in118

this work, the model specification data structures contain only the low-level information directly119

required by solvers. A generic simulation software has been developed to utilise such a model120

specification: when the software is run in parallel on message passing multiprocessors, every121

processing element integrates one part (sub-system) of the overall DAE system in time and122

performs an inter-process communication to exchange the data between processing elements.123

Simulation inputs are specified in a generic fashion as files in a (platform independent) binary124

format. The input files are generated by a modelling software (in this work DAE Tools) and125

contain the serialised model specification data structures and solver options. In addition, streaming126

processors/accelerators available on individual processing elements such as General Purpose127

Graphics Processing Units (GPGPU), Field Programmable Gate Arrays (FPGA) and manycore128

systems (Intel Xeon Phi) can be utilised for evaluation of model equations (Nikolić, 2018). An129

overview of the solution procedure is given in Fig. 1. The input data files are generated for every130

3/24



processing element, stored in a local or a Network File System and the parallel simulation started131

using the MPI interface. Sequential simulations can be performed by generating input files for a132

single processing element.133

The proposed methodology offers the numerous benefits. A single software is used for134

numerical solution of any system of non-linear differential and algebraic equations. An imple-135

mentation in standard C99 and C++11 allows compilation for all high-performance computing136

platforms. Model equations are specified as the postfix notation expression stacks and can137

be evaluated on virtually all computing devices including heterogeneous systems that contain138

streaming processors/accelerators (Nikolić, 2018). The partitioning algorithm applies multiple139

balancing constraints to simultaneously balance the memory and computation loads in the critical140

phases of the numerical solution. The format of the inter-process communication data is general141

enough to allow the data exchange to be performed by any communication interface (not only142

MPI). Thus, the simulations can be run on various types of distributed systems. Simulation143

inputs are specified using the data files in a platform-independent binary format. Therefore, the144

input files are used as a simple binary interface for model exchange and, in general, the required145

low-level information can be provided by any modelling software. This approach differs from146

the typical model-exchange/co-simulation interfaces in that it does not require a human or a147

machine readable model definition as in modelling and model-exchange languages nor a binary148

interface (C API) implemented in shared libraries as in Simulink (The MathWorks, Inc., 2018)149

and Functional Mock-up Interface (https://www.fmi-standard.org). For instance, in this approach,150

the model equations are specified as an array of binary data for direct evaluation by simulators on151

all platforms/operating systems with no additional processing nor compilation steps.152

Figure 1. Generic methodology for parallel simulation on distributed memory systems

The limitation of the methodology is that it is difficult to apply to problems that use adaptive153

grids since the total number of unknowns/equations change in runtime. In these cases, generation154

of model equations and partitioning must be carried out after every change in the grid. In addition,155

the partitioning algorithm treats systems of equations as black-boxes and is therefore unable to156

exploit their specific structure which might result in inefficient preconditioners.157

The article is organised in the following way. First, the required data structures, algorithms158

and implementations are presented. Then, the proposed methodology is applied to a medium159

scale phase separation model. The simulation results, an overall performance and performance of160

individual phases, an efficiency of the preconditioner, the quality of the load balancing prediction,161
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and overheads due to the load imbalance are analysed and discussed. Finally, a summary of the162

most important capabilities of the methodology and directions for future work are given in the163

last section.164

METHODS165

The methodology is implemented in DAE Tools software (Nikolić, 2016) and based on the166

previously developed methodology for parallel evaluation of general systems of differential and167

algebraic equations on shared memory systems (Nikolić, 2018). An overview of the solution168

procedure on shared memory systems is given in Fig. 2. The solution process consists of: (1)169

numerical integration in time (requires evaluation of equations residuals), (2) linear algebra170

operations, (3) solution of systems of linear equations (requires evaluation of derivatives and171

computation of the preconditioner), and (4) (optionally) integration of sensitivity equations172

(requires evaluation of sensitivity residuals). The parallel solution on distributed memory systems173

requires the same tasks, but here applied to integration of only one part of the overall system174

(sub-system). Therefore, the software for numerical solution on shared memory systems is used175

as the main building block for distributed memory systems as depicted in Fig. 3. The additional176

functionality that is required includes: (a) an inter-process communication routine for exchange177

of adjacent unknowns (unknowns that belong to other processing elements), and (b) linear algebra178

routines for distributed memory systems (already available from the SUNDIALS suite). Both179

routines are implemented using the MPI C interface. Versions for solution of both ODE and DAE180

systems are developed. However, the focus in this work is on DAE systems as a more general181

form of differential equations which are more difficult to solve than ODE systems.182

Figure 2. Simulation on shared memory systems (the main building block)
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Figure 3. Simulation on distributed memory systems

Key concepts and data structures183

The methodology is based on several concepts, each providing a distinct functionality:184

Compute Stack The Reverse Polish (postfix) notation expression stack used as a platform and185

programming language independent method to describe, store in computer memory and186

evaluate equations of any type and any size (Nikolić, 2018). Equations can be linear or non-187

linear, algebraic or differential. Each mathematical operation and its operands are described188

by a specially designed csComputeStackItem_t data structure (given in the Supplemental189

Listing S1), and every equation is transformed into an array of these structures (a Compute190

Stack). Typically, Compute Stacks are automatically generated from simulator-specific191

data structures. For instance, in DAE Tools equations are transformed into the Evaluation192

Tree data structure using the operator overloading technique (Nikolić, 2018). The Compute193

Stacks are generated by traversing the Evaluation Tree nodes.194

Compute Stack Machine A stack machine used to evaluate a single equation (that is a single195

Compute Stack) using Last In First Out (LIFO) queues (function evaluateComputeStack in196

the Supplemental Listing S1).197

Compute Stack Evaluator An interface for parallel evaluation of systems of equations (csCom-198

puteStackEvaluator_t class in the Supplemental Listing S2). Two implementations are199

available (Nikolić, 2018): (a) the OpenMP API is used for parallelisation on general pur-200

pose processors, and (b) the OpenCL framework is used for parallelisation on streaming201

processors and heterogeneous systems.202

Compute Stack Model Data structure that holds the model specification - all information re-203

quired for the numerical solution, either sequentially or in parallel (csModel_t data structure204
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in the Supplemental Listing S3). For sequential simulations the system is described by205

a single csModel_t object. For parallel simulations the system is described by an array206

of csModel_t objects each holding information about one ODE/DAE sub-system. Every207

model contains the following data: (a) the structure of a model with information about208

the variable names, types, absolute tolerances and initial conditions: csModelStructure_t209

structure, (b) the model equations: csModelEquations_t structure, (c) the sparsity pattern of210

the ODE/DAE (sub-) system (required for evaluation of derivatives): csSparsityPattern_t211

structure, (d) the partition data (used for inter-process communication): csPartitionData_t212

structure, and (e) the Compute Stack evaluator instance: csComputeStackEvaluator_t213

object.214

Compute Stack Differential Equations Model An interface that provides a common API re-215

quired by ODE/DAE solvers for integration of systems of differential equations in time216

(csDifferentialEquationModel_t class in the Supplemental Listing S4). It is derived from217

csModel_t class and provides functions for loading the model from input files, retrieving218

the sparsity pattern of the ODE/DAE system, setting the variable values/derivatives, ex-219

changing the adjacent unknowns among the processing elements using the MPI interface,220

and evaluating equations and derivatives.221

Compute Stack Simulator Software for sequential and parallel simulation of general ODE/-222

DAE systems in time (csSimulator_ODE and csSimulator_DAE, respectively).223

Algorithm for partitioning of general systems of equations224

The computationally most intensive phases of the numerical solution are: (1) evaluation of225

equations residuals, (2) solution of a system of linear equations, and (3) evaluation of derivatives226

(the Jacobian matrix) for computation of a preconditioner. Combined, they typically amount to227

more than 95% of the total integration time (Nikolić, 2018). Large-scale numerical simulations228

on parallel computers require the distribution of equations among the processing elements so that229

the duration of each phase of the numerical solution is approximately the same. Therefore, the230

workload (storage and computation) in each phase and the inter-process communication volume231

must be well balanced among the processing elements for maximum performance.232

The traditional approach to this problem is to partition a DAE system so that the number of233

equations assigned to each partition is the same, and the number of adjacent unknowns assigned to234

different processing elements is minimised. In theory, the first condition balances the computation235

among the PEs while the second one minimises the volume of inter-process communication236

data. However, the traditional problem formulation is limited in that it can only balance a single237

quantity and works well only if the DAE system is composed of the same type of equations or the238

blocks of equations of the same type. The general DAE systems may include very diverse types of239

equations that require different number of variables. The traditional approach in this case would240

produce unbalanced partitions with different workloads. Since it is critical that every processor241

have an equal amount of work from each phase of the computation, the multiple quantities must242

be load balanced simultaneously. This is because synchronisation is often performed implicitly243

or explicitly after every computational phase, and each phase must be individually load balanced.244

Graph partitioning is a common way to satisfy the necessary conditions. A graph of the DAE245

system is constructed by associating a vertex with each equation and adding an edge between246

two vertices i and j if there is a variable with the index j in the equation i. The system is247

treated as a black-box and the entire system is unconditionally broken down into a set of scalar248
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equations. In the current implementation, specifying directional interdependence of variables249

is not possible. Mathematically motivated solution strategies such as the Schur-complement250

method which reformulate the problem into a sequence of sub-problems are not supported at the251

moment. In this work, partition of an unstructured graph into a user-specified number k of parts252

is performed using the multilevel k-way partitioning paradigm implemented in METIS (Karypis253

and Kumar, 1995). The objective of the traditional graph partitioning problem is to compute a254

k-way partitioning such that the number of edges that straddle different partitions is minimised.255

This objective is commonly referred to as the edge-cut. In addition, METIS includes partitioning256

routines that can be used to partition a graph in the presence of multiple balancing constraints.257

Each vertex is assigned a vector of weights and the objective of the partitioning routines is to258

minimise the edge-cut subject to the constraints that each one of the weights is equally distributed259

among the partitions (Karypis and Kumar, 1995). For instance, if the first weight corresponds to260

the amount of computation and the second weight corresponds to the amount of storage required,261

then the partitioning algorithm will balance both the computation performed in each partition as262

well as the amount of memory that it requires.263

The partitioning algorithm in this work applies a static load balancing method. Since the264

number of equations is constant, the computation and memory loads per single iteration do not265

change during a simulation and are apriori known. However, in some cases (i.e. the pressure-266

Poisson problem for the segregated solution approach for the Navier-Stokes equations) the number267

of iteration steps required to reach convergence can vary (even dynamically in time). Furthermore,268

in some other instances (such as the combustion problem with travelling flame), once the flame269

starts to evolve over a broader region, the solution process of this sub-problem becomes more270

and more complex, and thus, requires much more time. Implementation of the dynamic load271

balancing methods for these cases will be a part of the future work. In the Compute Stack272

approach the workloads can be accurately and precisely estimated by taking into consideration273

several properties of equations and partitions. The equation properties used in this work are274

(Table 1): number of Compute Stack items, number of floating-point operations (FLOPs) required275

for evaluation, number of non-zero items in one row of the incidence matrix (equal to the number276

of variables that appear in the equation), and number of FLOPs required for evaluation of a277

single row of the Jacobian matrix. The partition properties are (Table 2): number of equations,278

number of adjacent unknowns, number of items in the Compute Stack array in all equations,279

number of non-zero items in the partition’s incidence matrix, number of FLOPs required for280

evaluation of equations, and number of FLOPs required for evaluation of derivatives (the Jacobian281

matrix). The memory and computation workloads in individual phases can be estimated using the282

partition properties as described in Table 3. For instance, the memory load for evaluation of the283

Jacobian matrix is proportional to the number of non-zero items in the incidence matrix, while284

the computation load is proportional to the number of FLOPs required for its evaluation. This285

way, the memory and computation loads of three critical phases of the numerical solution can be286

simultaneously balanced.287
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Table 1. Equation properties related to memory and computation loads

Property Description
Ncs[i] Number of Compute Stack items
N f lops[i] Number of FLOPs for evaluation of the equation
Nnz[i] Number of non-zero items in the equation
N f lops_ j[i] = Nnz[i] ·N f lops[i] Number of FLOPs for evaluation of derivatives

Table 2. Partition properties related to memory and computation loads

Property Description
Neq Number of equations/unknowns
Nad j Number of adjacent unknowns
Ncs = ∑

Neq
i=0 Ncs[i] Number of Compute Stack items

N f lops = ∑
Neq
i=0 N f lops[i] Number of FLOPs for evaluation of equations

Nnz = ∑
Neq
i=0 Nnz[i] Number of non-zero items in the incidence matrix

N f lops_ j = ∑
Neq
i=0 N f lops_ j[i] Number of FLOPs for evaluation of derivatives

Table 3. Memory and computation loads in individual phases of the numerical solution

Phase Memory load Computation load
1. Evaluation of equations residuals ∝ Ncs ∝ N f lops
2. Solution of a linear system ∝ Nnz ∝ (Neq,Nnz)
3. Evaluation of a Jacobian/preconditioner ∝ Nnz ∝ N f lops_ j

The algorithm for partitioning of a general DAE system using the multiple balancing con-288

straints is presented in Algorithm 1. Currently, it is implemented in Python using PyMetis289

Python wrappers (Kloeckner, 2018) for METIS software. For performance reasons, the future290

work will be focused on the C++ implementation (already available as a part of the OpenCS291

framework, http://www.daetools.com/opencs.html). First, properties of all equations are collected292

and adjacency data and vertex weights created. Then, the partitioning is performed for the293

specified number of processing elements (Npe) minimising edge-cut and balancing the loads294

using the vertex weights. Finally, the following data are generated for every partition: (a) a295

set with all variable indexes (AllIndexes), (b) a set with variable indexes owned by this parti-296

tion (OwnedIndexes), (c) a set with indexes owned by other partitions (AdjacentIndexes), (d)297

two dictionaries with indexes for data exchange between partitions (ReceiveFromIndexes and298

SendToIndexes), and (e) a dictionary that maps global variable indexes to local partition indexes299

(bi_to_bi_local). These data are used to populate csPartitionData_t and csSparsityPattern_t data300

structures. The algorithm always produces fully symmetrical point-to-point send/receive requests.301

The list of unknowns that the processing element (partition) PE[i] receives from the partition302

PE[ j] is identical to the list of unknowns that the partition PE[ j] sends to the partition PE[i], and303

vice versa. The send/receive data are always tested before the start of the simulation to confirm304

that all variable indexes are correct and to prevent dead-locks or live-locks.305

To illustrate the necessity for additional constraints in partitioning of general systems of306

equations a small and a very simple system of equations is considered (Eq. 1). The system is307
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split into three partitions with one equation each. The partitioning results are given in Table 4.308

x1 + x2 + x3 = 0
x1 + 2 · x2 = 0

x3
2.0 − 1.0 = 0

(1)

Table 4. Partitioning results for a simple DAE system in Eq. 1

Partition Neq Nad j Ncs FLOPs for residuals Nnz FLOPs for Jacobian
0 1 2 5 2 additions 3 3 x (2 additions)
1 1 1 5 addition + multiplication 2 2 x (addition + multiplication)
2 1 0 5 division + subtraction 1 1 x (division + subtraction)

The number of equations is uniformly distributed, every equation in the system requires309

exactly two mathematical operations, and the number of Compute Stack items is identical in all310

equations. However, the computation load is not well balanced. Equations include mathematical311

operations that take different number of FLOPs for evaluation. For example, the multiplication312

and division operations take more time to finish than addition and subtraction. Hence, the time313

for evaluation of equations (and consequently the computation loads) are different.314

In this work, this issue is resolved using two dictionaries with a number of FLOPs required for315

unary and binary mathematical operations: unaryOperationsFlops and binaryOperationsFlops,316

respectively. Number of FLOPs can be specified for unary (+, -) and binary (+, -, *, / and **)317

mathematical operators, unary (sqrt, log, log10, exp, sin, cos, tan, asin, acos, atan, sinh, cosh,318

tanh, asinh, acosh, atanh, erf, floor, ceil, and abs) and binary (pow, min, max, atan2) mathematical319

functions. As a result, the total number of FLOPs can be precisely estimated for every equation. If320

a mathematical operation is not in the dictionaries, the algorithm assumes that it requires a single321

FLOP. The number of FLOPs for mathematical operations can be found in the hardware vendor’s322

documentation or estimated using the Performance Application Programming Interface (PAPI)323

or benchmark applications. In addition, this approach allows specification of a separate pair of324

dictionaries for every computational platform. For instance, evaluation time of trigonometric325

functions on a traditional CPU is different from the evaluation time on a GPU. Thus, the algorithm326

can produce the load balanced partitions for diverse types of computing devices.327

Partitioning of a DAE system and generation of input data files is performed using the DAE328

Tools MPI code generator. A typical procedure is presented in the source code listing 1. The329

MPI code generator produces input files, images with the sparsity pattern, a partition graph, and330

partitioning statistics in comma separated values and LaTeX file formats.331
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Listing 1. Code generation procedure (Python language)� �
332 # Import the MPI code−generator.333 from daetools.code_generators.mpi import daeCodeGenerator_MPI334
335 # Instantiate the MPI code generator object.336 cg = daeCodeGenerator_MPI()337
338 # Optional: specify the number of FLOPS for mathematical339 # operations that require more than one FLOP.340 # All other operations are assumed to require a single FLOP.341 unaryFlops = {eSqrt : 6, eExp : 9}342 binaryFlops = {eMulti : 2, eDivide : 4}343
344 # Generate input files in the specified directory for 10 processing elements.345 # The partitioning objective is to minimise edge−cut (the default),346 # and balance the FLOPS for evaluation of residuals and the Jacobian.347 # The argument "simulation" is an initialised DAE Tools simulation object.348 cg.generateSimulation(simulation,349 directory = ’...’,350 Npe = 10,351 balancingConstraints = [’Nflops’, ’Nflops_j’],352 unaryOperationsFlops = unaryFlops,353 binaryOperationsFlops = binaryFlops)354 � �355

The generated list of input files for simulations (one set for every processing element) is356

given in Table 5. PE in file names is an integer identifying the processing element equal to the357

value returned from MPI_Comm_rank function. Each file contains a serialised data structure358

member of the csModel_t class: csModelStructure_t, csModelEquations_t, csSparsityPattern_t359

and csPartitionData_t. While the model specification remains unaltered, the simulations can be360

performed for different time horizons and different solver and preconditioner options. Thus, the361

simulation options are specified in a human readable JSON format and contain four sections:362

“Simulation“ (run-time data), “Model“ (ODE/DAE model options), “Solver“ (options for the363

ODE/DAE solver) and “LinearSolver“ (the linear solver and the preconditioner options). The364

“Simulation“ section includes the data such as the simulation start and end time, data reporting365

interval, relative tolerance and the output directory. The “Model“ section includes the data such366

as options for evaluation of model equations (the Compute Stack Evaluator). Names of the367

solver/preconditioner parameters are identical to the original names used by the corresponding368

libraries or to the names of Set_ functions (i.e. the MaxOrd parameter specified using the IDASet-369

MaxOrd function in the SUNDIALS suite). The typical contents of the simulation_options.json370

file are given in the Supplemental Listing S5.371

Table 5. The description of input data files for distributed simulations

Input file Contents
model_structure-[PE].csdata Serialised csModelStructure_t data structure
model_equations-[PE].csdata Serialised csModelEquations_t data structure
sparsity_pattern-[PE].csdata Serialised csSparsityPattern_t data structure
partition_data-[PE].csdata Serialised csPartitionData_t data structure
simulation_options.json Simulation, DAE and linear solver parameters
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Algorithm 1 Partitioning of a general system of equations using multiple balancing constraints
Inputs: Information about equations in the DAE system.
Outputs: csPartitionData_t and csSparsityPattern_t data structures.
Step 1. Create the adjacency graph (variable indexes in all equations) and weights

for ei := 0 to Nequations do
Get variableIndexes,Ncs,N f lops,Nnz,N f lops_ j for the current equation
EquationsIndexes[ei] := variableIndexes
VertexWeights[ei] :=

(
Ncs,N f lops,Nnz,N f lops_ j

)
end for

Step 2. Perform the partitioning (minimise edge-cut and balance the load using the vertex weights)
ncuts, partitions := pymetis.part_graph(N pe,EquationsIndexes,VertexWeights)

Step 3. For each partition: collect variable indexes owned by this partition (OwnedIndexes)
for ei := 0 to Nequations do

add ei index to OwnedIndexes[partitions[ei]] set
end for

Step 4. For each partition: generate a set with all indexes (AllIndexes)
for pe := 0 to Npe do

for ei := 0 to OwnedIndexes[pe].size do
add EquationsIndexes[pe] list to AllIndexes[ei] set

end for
end for

Step 5. For each partition: generate a set with indexes owned by other partitions (Ad jacentIndexes)
for pe := 0 to Npe do

di f f erence := AllIndexes[pe] \ OwnedIndexes[pe]
add di f f erence subset to Ad jacentIndexes[pe] set

end for
Step 6. For each partition: generate maps with indexes for data exchange between partitions

for pei := 0 to Npe do
for pe j := 0 to Npe do

intersection := Ad jacentIndexes[pei] ∩ OwnedIndexes[pe j]
if intersection is not empty then

insert {pe j, intersection} pair into ReceiveFromIndexes[pei] map
insert {pei, intersection} pair into SendToIndexes[pe j] map

end if
end for

end for
Step 7. For each partition: generate a map of global to local partition indexes (bi_to_bi_local)

for pe := 0 to Npe do
Nowned := OwnedIndexes[pe].size
for i := 0 to OwnedIndexes[pe].size do

bi := OwnedIndexes[pe][i]
insert {bi, i} pair into bi_to_bi_local[pe] map

end for
for i := 0 to Ad jacentIndexes[pe].size do

bi := Ad jacentIndexes[pe][i]
insert {bi,Nowned + i} pair into bi_to_bi_local[pe] map

end for
end for
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Algorithm for inter-process data exchange372

The algorithm for data exchange among processing elements is simple and only the point-to-point373

communication routines are required. First, the current values and derivatives of state variables374

are copied from the solver arrays. Second, for each processing element in the map csPartition-375

Data_t::sendToIndexes the values and derivatives are asynchronously sent to other processing376

elements (the resulting MPI_Request objects are added to the requests array). Next, for each377

processing element in the map csPartitionData_t::receiveFromIndexes the values and derivatives378

are asynchronously received from other processing elements (the resulting MPI_Request objects379

are added to the requests array). Then, the algorithm waits for all MPI send/receive operations to380

finish. Finally, the received values and derivatives of adjacent unknowns are copied to the local381

arrays.382

Algorithm 2 Inter-process data exchange (using the MPI C interface)
Inputs: csPartitionData_t data structure, variable values and derivatives.
Outputs: Values and derivatives of adjacent unknowns.
Step 1. Copy the values and derivatives of state variables from the solver to local arrays
Step 2. Asynchronously send values and derivatives to other PE

for pesend_to := 0 to Npe_send_to do
request1 := MPI_Isend(values, ..., pesend_to, ...)
request2 := MPI_Isend(derivatives, ..., pesend_to, ...)
Add request1 and request2 to the requests array of MPI_Request objects

end for
Step 3. Asynchronously receive the values/derivatives from other PE

for pereceive_ f rom := 0 to Npe_receive_ f rom do
request1 := MPI_Irecv(values, ..., pereceive_ f rom, ...)
request2 := MPI_Irecv(derivatives, ..., pereceive_ f rom, ...)
Add request1 and request2 to the requests array of MPI_Request objects

end for
Step 4. Wait for all operations to finish

MPI_Waitall(requests);
Step 5. Copy the received values and derivatives of adjacent unknowns to local arrays

Generic simulation software383

The central point in the proposed methodology is a generic simulation software. Versions for both384

ODE and DAE systems are developed: csSimulator_ODE and csSimulator_DAE, respectively.385

The focus in this work is on DAE systems as a more general form of systems of differential386

equations. The software can be executed sequentially on a single processor or in parallel on387

message passing multiprocessors, where every processing element integrates one part (sub-388

system) of the overall ODE/DAE system in time and performs an inter-process communication to389

exchange the adjacent unknowns among the processing elements.390

csSimulator_DAE is a part of the Open Compute Stack (OpenCS) framework - an independent391

component of the DAE Tools equation-based modelling, simulation and optimisation software392

(Nikolić, 2016). DAE Tools MPI code generator (daeCodeGenerator_MPI) is used to generate393

the input files from DAE Tools simulations for the specified number of processing elements394

(as given in the source code listing 1). DAE Tools is free software released under the GNU395
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General Public Licence. The installation packages, compilation instructions and more information396

about DAE Tools and OpenCS software can be found on the DAE Tools website (http://www.397

daetools.com and http://www.daetools.com/opencs.html). The source code is available from the398

SourceForge subversion repository: https://sourceforge.net/p/daetools/code. The OpenCS source399

code including the csSimulator_DAE simulator is located in the trunk/OpenCS directory.400

Both versions of the simulator are cross-platform and the simulation inputs are specified in a401

platform-independent way using input files with the model specification and run-time options, as402

described in the section Algorithm for partitioning of general systems of equations. This way,403

the same model can be simulated using the same software on all platforms. For integration of404

DAE systems in time the software uses the variable-step variable-order backward differentiation405

formula available in SUNDIALS IDAS solver (Hindmarsh et al., 2005). Systems of linear406

equations are solved using the Krylov-subspace iterative methods. Currently, two solvers are407

available: the generalised minimal residual solver from the SUNDIALS suite and the generalised408

minimal residual solver from the Trilinos AztecOO interface to the Aztec solver library (Heroux409

et al., 2005). Both solvers utilise preconditioners available from the Trilinos suite: IFPACK,410

ML and AztecOO built-in preconditioners. For computationally intensive tasks (i.e. evaluation411

of residuals and derivatives) the software can utilise multi-level parallelism techniques such as412

hybrid MPI/OpenMP and heterogeneous MPI/OpenCL. The commands for running sequential413

and parallel simulations on different platforms are presented in the source code listing 2.414

Listing 2. Running simulations using csSimulator_DAE� �
415 # 1. Simulation in GNU/Linux416 # Sequential simulation (for Npe = 1):417 $ csSimulator_DAE "input_files_directory"418
419 # Parallel simulation (for Npe > 1) using Open MPI:420 $ mpirun −np Npe csSimulator_DAE "input_files_directory"421
422 # 2. Simulation in Windows423 # Sequential simulation (for Npe = 1):424 $ csSimulator_DAE.exe "input_files_directory"425
426 # Parallel simulation (for Npe > 1) using Microsoft MPI:427 $ mpiexec −n Npe csSimulator_DAE.exe "input_files_directory"428 � �429
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CASE STUDY430

Transient two-dimensional Cahn-Hilliard equation, unstructured grid431

The model describes the process of phase separation, where two components of a binary mixture432

separate and form domains pure in each component. The problem is carefully selected to illustrate433

both the capabilities and the current limitations of the proposed methodology. The system is434

described by the Cahn-Hilliard equations given in eq. 2.435

dc
dt

= D∇
2
µ

µ = c3− c− γ ∇
2c

(2)

Here, D is the diffusion coefficient, c is the concentration, µ is the chemical potential and
√

γ436

defines the length of the transition regions between the domains. The mesh is a simple square437

(0,100)x(0,100) with 100x100 elements. Input parameters are D = 1 and γ = 1. Boundary438

conditions for both c an µ are insulated boundary conditions (no flux on boundaries). Initial439

conditions are set to c(0) = 0.5+ cnoise where the noise cnoise is specified using the normal440

distribution with standard deviation of 0.1. The system is integrated for 500 seconds and the441

outputs are taken every 5 seconds. The source code (including the weak form of the discrete442

problem - the local cell contributions to the system mass and stiffness matrices and the load443

vector) is given in the Supplemental Listing S6 (case_1.py file) and on DAE Tools website444

(http://www.daetools.com/docs/tutorials-fe.html#tutorial-dealii-3).445

The Cahn-Hilliard equation is spatially discretised using the Finite Elements Method, the446

scalar Lagrange interpolation finite elements (Q1) and the Gauss quadrature formula. In DAE447

Tools, deal.II (http://dealii.org) library is utilised for low-level tasks such as mesh loading,448

management of finite element spaces, degrees of freedom, assembly of the system stiffness and449

mass matrices and the system load vector, and setting the boundary conditions. The assembled450

system matrices are used to generate a set of equations in the following form:
[
M(x,y, t)

]
{ẋ}+451 [

A(x,y, t)
]
{x}−

{
F(x,y, t)

}
= 0, where x and ẋ are vectors of state variables and their derivatives,452

y are degrees of freedom (assigned/fixed variables), M and A are mass and stiffness matrices and453

F is the load vector. The generated set of equations (in general case a DAE system) are solved454

together with the rest of equations in the model.455

The model is implemented in Python using the DAE Tools v1.8.1 software (Nikolić, 2016).456

The DAE system is integrated in time using the variable-step variable-order backward differen-457

tiation formula from SUNDIALS IDAS solver. Systems of linear equations are solved using458

the SUNDIALS preconditioned generalised minimal residual solver using the IFPACK (Sala459

and Heroux, 2005) ILU preconditioner from Trilinos suite (Heroux et al., 2005). The total of 11460

different runs have been performed (Table 6): (a) sequential run using the DAE Tools software461

(S-1), (b) sequential run using the csSimulator_DAE simulator (S-2), (c) eight parallel runs using462

the csSimulator_DAE simulator with different balancing constraints applied to the partitioning463

algorithm (P-1 to P-8), and (d) one parallel run using the csSimulator_DAE simulator where464

the system is manually partitioned by dividing the 2D mesh into four quadrants (P-9). The465

number of equations (Neq), the number of non-zero items in the Jacobian matrix (the total number466

Nnz = ∑
Neq
i=1 Nnz[i] and the average number per equation Nnz/equation), the number of Compute467

Stack items (the total number Ncs = ∑
Neq
i=1 Ncs[i] and the average number per equation Ncs/equation)468

and the average number of Compute Stack items for evaluation of a single row of the Jacobian469
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matrix (Ncs/ jacob_row = 1
Neq

∑
Neq
i=1 Nnz[i]Ncs[i]) for the sequential runs S-1 and S-2 (with Npe =470

1) and an average for parallel runs P-1 to P-9 (with Npe = 4) are given in Table 7. The input471

parameters for the IFPACK preconditioner for all runs are given in Table 8 where k is the fill-in472

factor, α is the absolute threshold, ρ is the relative threshold and ω is the relax value. The473

simulations are carried out in 64-bit Debian Stretch GNU/Linux and compiled using the gcc 6.3474

compiler, MPI-3.1 from the Open MPI v2.0.2 package, OpenMP 4.5 from the GOMP library, and475

OpenCL 1.2 from NVidia CUDA 9.0 with v384.90 display driver. The hardware configuration476

consists of Intel i7-6700HQ CPU (4 cores/8 threads at 2.6 GHz, 8 GB of RAM), and a discrete477

NVidia GeForce GTX 950M GPU (640 execution units at 914 MHz, 2 GB of RAM).478

Table 6. Simulation runs and description of objectives

Run Balancing constraints Description
S-1 - Sequential simulation using DAE Tools
S-2 - Sequential simulation using csSimulator_DAE
P-1 None Edge-cut only
P-2 Ncs Balance the number of ComputeStack items
P-3 Nnz Balance the number of non-zero items in the incidence matrix
P-4 Nflops Balance the number of FLOPs for evaluation of residuals
P-5 Nflops_j Balance the number of FLOPs for evaluation of the Jacobian
P-6 Ncs, Nflops Balance both the number of ComputeStack items and

the number of FLOPs for evaluation of residuals
P-7 Nnz, Nflops_j Balance both the number of non-zero items in the incidence matrix

and the number of FLOPs for evaluation of the Jacobian
P-8 Ncs, Nnz, Nflops, Nflops_j Balance all (constraints from runs P-6 and P-7 combined)
P-9 - Manual partition of a 2D mesh into 4 quadrants

Table 7. Workload-related properties for sequential and parallel runs in Case 1

Run Neq Nnz Ncs Nnz/equation Ncs/equation Ncs/ jacob_row
Sequential 20,000 355,216 15,554,304 17.76 778 13,902
Parallel ∼5,000 ∼88,804 ∼3,888,576 ∼17.76 ∼778 ∼13,902
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Table 8. IFPACK preconditioner parameters for sequential and parallel runs in Case 1

Run k ρ α ω

S-1 3 1.0 10−5 0.0
S-2 3 1.0 10−5 0.0
P-1 3 2.0 0.1 0.5
P-2 3 2.0 0.1 0.5
P-3 4 2.0 0.1 1.0
P-4 4 2.0 0.1 0.0
P-5 3 2.0 0.1 0.5
P-6 3 2.0 0.1 0.5
P-7 4 2.0 0.1 1.0
P-8 3 2.0 0.1 0.5
P-9 3 2.0 0.1 0.5

RESULTS479

The detailed statistical data generated by the partition algorithm such as: the number of equa-480

tions (Neq), the number of adjacent unknowns in every partition (Nad j) and deviations from481

the average value (in percents) for the number of equations (Ndev
eq ), the number of adjacent482

unknowns (Ndev
ad j) and all available balancing constraints (Ndev

cs , Ndev
f lops, Ndev

nz and Ndev
f lops_ j) are483

given in Supplemental Tables S1 to S9. The following six phases of the numerical solution are484

analysed: (1) evaluation of residuals (EvaluateResiduals), (2) evaluation of the Jacobian matrix485

(EvaluateJacobian), (3) computation of the preconditioner, excluding the time for evaluation of486

the Jacobian (ComputePreconditioner), (4) application of the preconditioner to solve the linear487

system (ApplyPreconditioner), (5) Jacobian-vector multiplication, required in every iteration488

of the linear solver (JacobianVectorProduct; in SUNDIALS IDAS the difference quotient ap-489

proximation is used and requires an additional call to the EvaluateResiduals function), and (6)490

exchange of adjacent unknowns between processing elements, required in every call to Evaluate491

Residuals (InterProcessDataExchange). The EvaluateResiduals phase includes calls from the492

DAE solver (once per every DAE step taken) and calls from the linear solver in the Jacobian-493

vector product function (since the difference quotient approximation is used). The duration of the494

JacobianVectorProduct phase includes the time for evaluation of residuals.495

The performance and the simulation results of the sequential runs S-1 and S-2 (csSimula-496

tor_DAE versus DAE Tools simulation software) are compared for three different cases where497

model equations are evaluated: (a) sequentially, (b) using the OpenMP API on a multi-core Intel498

CPU, and (c) using the OpenCL framework on NVida GPU. The duration of five phases of the499

numerical solution in runs S-1 and S-2 are presented in Table 9 (the InterProcessDataExchange500

phase is absent in sequential runs). The percentage of the integration time for individual phases501

in runs S-1 and S-2 where equations are evaluated sequentially is given in Table 10.502

The quality of simulation results in all runs are assessed using the normalised global error:503

‖E‖ =
√

1
Neq ∑

(
x[i]− xDAE_Tools[i]

)2, where x and xDAE_Tools are results obtained using the504

csSimulator_DAE and the DAE Tools software, respectively. For parallel runs, the integration505

times, the normalised global errors and an estimate for the total overheads due to the load506

imbalance are given in Table 11. The solver statistics for sequential and parallel runs are given in507
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Supplemental Table S10. The detailed statistics (the total time, the number of calls, average time508

per call, total overheads and deviations from the average overhead) for six phases of the sequential509

and parallel simulations are given in Supplemental Tables S11 to S16, respectively. Durations510

of the above six phases are measured for every call throughout the simulation. An overhead511

for a single call is calculated using: max(durations)−min(durations), where durations is an512

array of Npe items each representing the time required for the phase to complete - one for every513

processing element. The overhead times for every call during the parallel runs P-1 to P-9 are514

plotted in Supplemental Fig. S1 to S9. The total overhead due to the load imbalance is calculated515

by summing up all individual overheads. However, it must be kept in mind that these are only516

estimates, since there are no explicit synchronisation points after every phase. An average time517

for each phase is calculated and actual deviations from the average (in percents) obtained for518

every processing element. This way, the prediction quality of the load balancing algorithm is519

assessed by comparing the actual (measured) load imbalances in Supplemental Tables S11 to520

S16 with the predicted load imbalances given in Supplemental Tables S1 to S9. The comparison521

between predicted and actual maximum absolute deviations from the average (in percents) are522

given in Tables 12, 13 and 14.523

Table 9. Duration in seconds of individual phases in the sequential runs S-1 and S-2

DAE Tools (S-1) csSimulator_DAE (S-2)
Sequential OpenMP OpenCL Sequential OpenMP OpenCL

Total integration time 181.17 80.32 49.46 180.01 65.57 49.37
EvaluateResiduals 125.80 53.39 36.71 124.75 42.16 36.53
EvaluateJacobian 47.01 15.61 4.14 46.62 13.61 4.09
ComputePreconditioner 3.49 5.26 3.90 3.76 3.87 3.88
ApplyPreconditioner 4.29 5.40 4.17 4.24 5.22 4.24
JacobianVectorProduct 79.78 34.09 23.43 79.65 26.92 23.33

Table 10. Time spent in individual phases of the solution (given as percentage of the total
integration time) in runs S-1 and S-2 for the case where equations are evaluated sequentially

DAE Tools (S-1) csSimulator_DAE (S-2)
EvaluateResiduals (DAE solver only) 25.11 % 25.05 %
EvaluateJacobian 25.95 % 25.90 %
ComputePreconditioner 1.92 % 2.09 %
ApplyPreconditioner 2.37 % 2.36 %
JacobianVectorProduct 44.34 % 44.27 %
DAE solver 0.31 % 0.33 %
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Table 11. Normalised global errors, integration duration and total overheads in parallel runs

Overhead
Run ‖E‖ Integration time, s Time, s %
P-1 1.83e-05 136.74 3.17 2.32
P-2 1.55e-05 152.74 3.12 2.04
P-3 3.51e-05 157.93 2.63 1.67
P-4 1.83e-05 156.32 3.19 2.04
P-5 1.51e-05 138.81 2.69 1.94
P-6 1.39e-05 152.17 4.53 2.98
P-7 1.86e-05 151.57 6.96 4.59
P-8 3.07e-05 108.67 12.97 11.94
P-9 2.07e-05 103.14 3.17 3.08

Table 12. Predicted vs. actual load imbalance in the EvaluateResiduals phase

Predicted (%) Actual (%)
Run Ndev

cs Ndev
f lops

P-1 0.22 0.22 0.40
P-2 0.01 0.01 0.19
P-3 0.09 0.09 0.16
P-4 0.01 0.01 0.36
P-5 0.06 0.06 0.08
P-6 0.39 0.39 0.57
P-7 0.87 0.87 1.02
P-8 4.06 4.06 4.09
P-9 0.00 0.00 0.24

Table 13. Predicted vs. actual load imbalance in the EvaluateJacobian phase

Predicted (%) Actual (%)
Run Ndev

nz Ndev
f lops_ j

P-1 0.15 0.30 0.58
P-2 0.10 0.09 0.22
P-3 0.01 0.13 0.06
P-4 0.10 0.09 0.26
P-5 0.10 0.02 0.28
P-6 0.45 0.42 0.52
P-7 0.82 0.89 1.36
P-8 4.00 4.12 4.00
P-9 0.00 0.00 0.08
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Table 14. Predicted vs. actual load imbalance in the InterProcessDataExchange phase

Predicted (%) Actual (%)
Run Ndev

ad j
P-1 15.68 13.07
P-2 20.22 12.94
P-3 13.17 8.69
P-4 20.22 7.82
P-5 4.80 4.21
P-6 21.29 16.42
P-7 9.94 9.21
P-8 18.88 11.43
P-9 20.47 6.32

DISCUSSION524

The quality of numerical solutions produced by the csSimulator_DAE software is verified525

by comparison between the sequential runs S-1 and S-2 (Table 9). The simulation results526

obtained using three different Compute Stack Evaluator implementations (sequential, OpenMP527

and OpenCL) are compared using the normalised global error (‖E‖). Both software use identical528

solvers and all simulations were performed using identical input parameters. The only difference529

is that csSimulator_DAE uses the parallel linear algebra routines. As expected, the simulation530

results are practically identical in all six sequential runs with ‖E‖ ≈ 0.531

The overall performance and duration of individual phases of the sequential numerical solution532

in both simulators are approximately the same (Table 9). csSimulator_DAE performs slightly533

faster due to the overhead of Python functions that the DAE Tools simulator frequently calls. In534

addition, the solver statistics such as the number of steps taken by the DAE solver, the number535

of linear and non-linear solver iterations and the number of evaluations of residuals and the536

Jacobian are approximately the same. From Table 10 it can be seen that computationally most537

intensive phases are: EvaluateResiduals, EvaluateJacobian and JacobianVectorProduct, where538

approximately 25%, 26% and 44% of the total integration time is spent, respectively. Since all539

three phases require evaluation of model equations, the evaluation of model equations, combined540

from different phases, requires approximately 95% of the total integration time.541

The simulation results from parallel runs P-1 to P-9 also agree very well with the results from542

the sequential run S-1. The normalised global errors (Table 11) are of the order of magnitude543

10−5 which is in accordance with the absolute and relative tolerances used (10−5).544

The observed speed-ups in evaluation of model equations in all parallel runs are as expected:545

approximately 4 and 3.6 for EvaluateResiduals and EvaluateJacobian phases, respectively (Sup-546

plemental Tables S11 and S12). Theoretically, since there are no dependency nor data exchange547

between processing elements, evaluation of equations should scale linearly with the increase in548

the number of processing elements. In addition, the speed-ups in the JacobianVectorProduct549

phase are approximately 3.5 (Supplemental Table S15). Thus, the achieved speed-ups correspond550

well to the maximum theoretical speed-up of four.551

Regarding the efficiency of the linear solver, the observed speed-ups in the ComputePrecondi-552

tioner (excluding evaluation of the Jacobian) and the ApplyPreconditioner phases are 2.0-3.6 and553

1.3-2.3, respectively (Supplemental Tables S13 and S14). The incomplete LU factorisation and554
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application of the preconditioner are performed on four times smaller systems of linear equations.555

Hence, the achieved speed-ups are lower than the maximum speed-up expected in an ideal case.556

In addition, it can be observed that the number of linear solver iterations until convergence (per557

non-linear iteration) is significantly higher than in the sequential runs S-1 and S-2. The number558

of iterations in the linear solver in runs S-1 and S-2 is 1.77, while it is between 2.93 and 5.42 in559

parallel runs (Supplemental Table S10). The most probable cause is the structure of partitions,560

that is the set of adjacent unknowns produced by the partitioning algorithm. Since the adjacent561

unknowns are removed from DAE sub-systems in processing elements, the resulting Jacobian562

matrices are modified as well. This fact affects the incomplete LU factorisation and, depending563

on the scale of adjacent unknowns, can produce less efficient preconditioners. Consequently,564

the number of iterations to reach the convergence is larger. The lowest number of iterations are565

recorded in runs P-8 and P-9 (Supplemental Table S10).566

The number of iterations in the linear solver has a large effect on the overall simulation per-567

formance. Although all parallel runs perform faster than the sequential runs S-1 and S-2 (Table568

11), the overall improvements of only 13 to 43% are far from the theoretical maximum. The569

main reason is a poor performance of the linear solver. Furthermore, every linear solver iteration570

requires a call to a costly Jacobian-vector multiply function which in the SUNDIALS implemen-571

tation involves an additional call to the EvaluateResiduals function and in total takes 60-70% of572

the integration time (Supplemental Table S15). The total number of calls to EvaluateResiduals573

function (from the DAE solver and the Jacobian-vector multiply function combined) are given in574

Supplemental Table S11. A large number of linear solver iterations requiring a large number of575

calls to EvaluateResiduals function is the main cause for the low overall performance, although576

the performance of other phases (EvaluateResiduals, EvaluateJacobian, ComputePrecontitioner577

and ApplyPreconditioner) increase approximately linearly with the number of processing ele-578

ments. Therefore, partitioning of a DAE system is an extremely important phase of the parallel579

numerical solution and, in order to exploit the problem-specific structure of model equations in580

certain cases, the current implementation of the partitioning algorithm must be modified.581

The total overheads from all phases combined are given in Table 11. Again, it must be kept in582

mind that these are only estimates, since there are no explicit synchronisation points after every583

phase. Thus, the load imbalance does not have a significant impact on the overall performance584

except in runs P-7 and P-8 which use multiple balancing constraints with somewhat higher load585

imbalances. The overheads in individual phases are given in Supplemental Tables S11 to S16.586

Significant overheads are recorded only in the EvaluateResiduals phase due to a large number587

of calls. In particular, the largest overhead is recorded in runs P-7 and P-8 where the largest588

overheads are predicted and expected.589

The difference between the predicted and actual load imbalances is quantified by a maximum590

absolute deviation from the average duration (in percents). The predicted load imbalance in591

the EvaluateResiduals phase is quantified by the maximum deviation from average in Ncs and592

N f lops (Ndev
cs and Ndev

f lops), in the EvaluateJacobian phase by deviation in Nnz and N f lops_ j (Ndev
nz593

and Ndev
f lops_ j) and in the InterProcessDataExchange phase by deviation in Nad j (Ndev

ad j). The594

prediction quality of the partitioning algorithm based on 4 available balancing constraints is595

very accurate. The maximum differences between predicted and actual load imbalance are:596

(a) for EvaluateResiduals phase (Table 12): 0.02 to 0.35% in both Ncs and N f lops, (b) for597

EvaluateJacobian phase (Table 13): 0.00 to 0.54% in Nnz and 0.07 to 0.47% in N f lops_ j, and (c)598

for InterProcessDataExchange phase (Table 14): 0.59 to 14.15% in Nad j. Not only the maximum599

21/24



deviations from average are well predicted but the deviations in individual PEs also closely follow600

the predicted values.601

The best load balance predictions in individual phases are as expected: (a) for EvaluateResid-602

uals phase in run P-2 (Ncs is used as a balancing constraint): Ncs = 0.00%, N f lops = 0.01%, (b)603

for EvaluateJacobian phase in runs P-3 (Nnz as a balancing constraint): Nnz = 0.01%, N f lops_ j =604

0.13%, and P-5 (N f lops_ j as a balancing constraint): Nnz = 0.10%, N f lops_ j = 0.02%, (c) for Inter-605

ProcessDataExchange phase in run P-5 (N f lops_ j as a balancing constraint): Nad j = 4.80%. Thus,606

the partitioning algorithm precisely and accurately predicts the workloads in the critical phases607

of the numerical solution (particularly in phases that involve evaluation of model equations).608

CONCLUSIONS609

In this work, the methodology for parallel numerical solution of general systems of non-linear610

differential and algebraic equations on distributed memory systems has been presented. It is611

based on the previously developed methodology for parallel evaluation of general systems of612

differential and algebraic equations on shared memory systems (Nikolić, 2018) and consists of613

the following parts: (1) an algorithm for transformation of model equations into a data structure614

suitable for parallel evaluation on different computing platforms, (2) data structures for model615

specification, (3) an algorithm for partitioning of general systems of equations, (4) an algorithm616

for inter-process data exchange, and (5) simulation software for integration of general DAE617

systems in time.618

Model equations are specified in a platform and programming language independent fashion619

as the Reverse Polish (postfix) notation expression stacks (Compute Stacks). The Compute620

Stack can represent any type of equations of any size and be evaluated using a stack machine621

(Compute Stack Machine) on virtually all computing devices (due to its simplicity). The model622

specification contains only the low-level model description with the minimum information623

required for integration in time, stored in C++ data structures. The data structures holding624

the model specification represent a simple binary interface for model exchange. In contrast625

to the existing approaches, the model description in this work does not require a human or a626

machine readable model definition nor shared libraries providing the C API. For instance, in this627

approach, the model equations are directly evaluated on all platforms/operating systems with628

no additional processing. The partitioning algorithm accurately balances the computation and629

memory loads in all important phases of the numerical solution. The simulation software can be630

executed sequentially on a single processor or in parallel on message passing multiprocessors,631

where every processing element integrates one part (sub-system) of the overall DAE system632

in time. Simulation inputs are specified in a generic fashion using the data structures with the633

model specification stored as files in binary format. For computationally intensive tasks the634

simulation software utilises multi-level parallelism techniques such as hybrid MPI/OpenMP and635

heterogeneous MPI/OpenCL.636

The proposed methodology has been applied to a medium-scale transient phase separation637

process. Six different phases of the numerical solution (EvaluateResiduals, EvaluateJacobian,638

ComputePreconditioner, ApplyPreconditioner, JacobianVectorProduct and InterProcessDataEx-639

change) and nine different load balancing strategies have been analysed. Typically, 95% of640

the total integration time is spent on evaluation of model equations and the Jacobian-vector641

multiplication in the linear solver. The simulation results have been assessed and verified using642

the normalised global error. An overall performance and performance in individual phases643
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have been compared to the sequential simulations. As expected, the performance of phases that644

include evaluation of model equations scale linearly with the number of processing elements.645

However, the overall simulation performance in parallel runs is far from the maximum due to the646

inefficiency of the preconditioner. The reason is that, since the partitioning algorithm treats a647

DAE system as a black-box, in some cases the generated sets of equations and adjacent unknowns648

in partitions does not allow creation of efficient preconditioners. The prediction quality of the649

static load balancing algorithm and overheads due to the load imbalance have been discussed650

in details. It has been found that the workloads in the critical phases of the numerical solution651

(evaluation of equation residuals and derivatives) are very accurately predicted.652

The strengths and limitations of the methodology have been discussed. The methodology is653

difficult to apply to problems that use adaptive grids since the total number of unknowns/equations654

change during the simulation. In addition, the partitioning algorithm must be improved to take655

advantage of the specific structure of model equations in some cases (i.e. the systems produced656

by discretisation of well known partial-differential equations on uniform grids and the systems657

which require the coupled treatment of all differential equations to ensure conservation such as658

the compressible Euler and incompressible Navier-Stokes equations).659

The future work will be focused on unifying the methodologies for parallel solution of general660

systems of differential and algebraic equations on shared and distributed memory systems into a661

single framework (Open Compute Stack), improvement of the partitioning algorithm and the load662

balancing strategies, creation of check points and routines for recovery after errors, wrapping663

new preconditioner libraries, and new Compute Stack Evaluator implementations for additional664

types of computing devices (such as Xeon Phi and FPGA).665
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