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ABSTRACT9

In this work, the main ideas and the key concepts of the Open Compute Stack (OpenCS)
framework are presented. The framework provides a common platform for equation-based
modelling and parallel simulation on shared and distributed memory systems and allows
the same model specification to be used on different high performance computing systems
and architectures including heterogeneous systems. The main OpenCS components are
described: (1) platform-independent model specification data structures for description of
general systems of differential and algebraic equations, (2) a platform-independent method to
describe, store in computer memory and evaluate general systems of equations on diverse types
of computing devices, (3) an Application Programming Interface (API) for model specification,
parallel evaluation of model equations, simulation and model exchange, (4) algorithms for
partitioning of general systems of equations and inter-process data exchange, and (5) simulation
software for parallel numerical solution of general systems of differential and algebraic equations
on shared and distributed memory systems. The methodology and an API for the typical use
cases are presented. The benefits provided by the common modelling platform are discussed in
details such as: the model specification data structures providing a simple platform-independent
binary interface for model exchange, and the model equations stored as an array of binary
data which can be evaluated on virtually all computing devices with no additional processing.
The capabilities of the framework are illustrated using two large scale problems and the overall
performance and performance of individual phases of the numerical solution analysed.
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INTRODUCTION29

Equation-based mathematical modelling is one of the efficient methods for simulation of engi-30

neering problems described by a system of ordinary differential (ODE) or differential-algebraic31

equations (DAE). On shared memory systems, the procedure for numerical solution of equation-32

based models includes the following computationally intensive tasks: (1) numerical integration33

of the overall ODE/DAE system in time by a suitable solver (requires evaluation of model34

equations), (2) linear algebra operations (mostly BLAS L1 vector operations and some of BLAS35

L2 matrix-vector operations), (3) solution of systems of linear equations (requires evaluation36

of derivatives), and (4) if requested, integration of sensitivity equations (requires evaluation of37

sensitivity residuals). On distributed memory systems, every processing element (PE) performs38



the same tasks on one part of the overall system (ODE/DAE sub-sybstem) and an inter-process39

data exchange required by the linear algebra and equation evaluation functions. In general,40

simulation programs for this class of problems are developed using:41

1. General-purpose programming languages such as C/C++ or Fortran and one of available42

suites for scientific applications such as SUNDIALS (Hindmarsh et al., 2005), Trilinos43

(Heroux et al., 2005) and PETSC (Balay et al., 2015)44

2. Modelling languages such as Ascend (Piela et al., 1991), gPROMS (Barton and Pantelides,45

1994), APMonitor (Hedengren et al., 2014) and Modelica (Fritzson and Engelson, 1998)46

3. Multi-paradigm numerical languages such as Matlab (The MathWorks, Inc., 2018a), Math-47

ematica (Wolfram Research, Inc., 2015) and Maple (Waterloo Maple, Inc., 2015)48

4. Higher-level fourth-generation languages (Python) and modelling software such as DAE49

Tools (Nikolić, 2016) and Assimulo (Andersson et al., 2015)50

5. Libraries for finite element (FE) analysis and computational fluid dynamics (CFD) such51

as deal.II (Bangerth et al., 2007), libMesh (Kirk et al., 2006), and OpenFOAM (The52

OpenFOAM Foundation, 2018)53

6. Computer Aided Engineering (CAE) software for finite element analysis and computational54

fluid dynamics such as HyperWorks (Altair, 2018), STAR-CCM+ and STAR-CD (Siemens,55

2018), COMSOL Multiphysics (COMSOL, Inc., 2018), ANSYS Fluent/CFX (Ansys, Inc.,56

2018) and Abaqus (Dassault Systemes, 2018)57

A detailed discussion of capabilities and limitations of the available approaches for speci-58

fication of model equations and development of large-scale simulation programs are given in59

Nikolić (2016, 2018, 2019). In all approaches, an interface to a particular ODE/DAE solver60

must be implemented to provide the information required for numerical integration in time (Fig.61

1). The solver interface is directly implemented in general-purpose programming languages62

(i.e. as user-supplied functions). In other approaches, the solver interface is built around the63

internal simulator-specific data structures representing the model. For instance, the source code of64

modelling languages is typically parsed into an Abstract Syntax Tree (AST). The produced AST65

can be transformed into a simulator-specific data structure or used to generate C source code as66

in OpenModelica (Fritzson et al., 2005) and JModelica (Akesson et al., 2010). Other modelling67

software such as DAE Tools use the operator overloading technique to produce a tree-like data68

structure (Evaluation Tree). CAE software perform a discretisation of Partial Differential Equa-69

tions (PDE) on a specified grid: (a) on unstructured grids, the results of discretisation using the70

Finite Element (FE) or Finite Volume (FV) methods are the mass and stiffness matrices and load71

vectors, and (b) on structured grids, the results of discretisation using the Finite Difference (FD)72

method are the stencil data (nodes arrangement and their coefficients). The simulator-specific data73

structures, sparse matrix-vector (SpMV) and matrix-matrix (SpMM) operations or stencil codes74

are then utilised by the ODE/DAE solver interface to evaluate model equations and derivatives.75

The idea in this work is to separate a high-level (simulator-dependent) model specification76

procedure, typically performed only once, from its parallel (in general, simulator-independent)77

numerical solution. While description of models and generation of a system of equations can be78

performed in many different ways depending on the type of the problem and the method applied79

by a simulator, the numerical solution procedure always requires the same (low-level) information.80

For instance, a high-level model specification for the problems governed by partial differential81

equations can be created using a modelling language or a CAE software. The low-level model82

description is internally generated by simulators utilising various discretisation methods and83

results in a system of differential equations (ODE or DAE). However, the information required for84
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Figure 1. An overview of available modelling approaches. A high-level model description is
created using the modelling or general purpose programming languages, FEA/CFD libraries and
CAE software. A low-level model description is generated in a problem and simulator specific
way and used to implement an interface to ODE/DAE solvers. The solver interface utilises the
simulator-specific data structures to provide the information required for integration of the
ODE/DAE system in time.

numerical solution in both cases are essentially identical: the data about the number of variables,85

their names, types, absolute tolerances and initial conditions, and the functions for evaluation86

of equations and derivatives. Therefore, the low-level model description coupled with a method87

for parallel evaluation of model equations on different computing devices can be a basis for88

a universal software for parallel simulation of general systems of differential equations on all89

important platforms. In general, such a model description, due to its simplicity, can be generated90

and utilised by any existing simulator. This way, simulations can be performed on platforms not91

supported by that particular simulator or the simulation performance on the supported platforms92

can be improved by evaluating model equations in parallel on devices that are not currently utilised.93

In addition, the same platform-independent model description can be used for model exchange94

and benchmarks between different simulators, solvers, individual computing devices and high95

performance computing platforms (i.e. between heterogeneous clusters, where evaluation of96

model equations is currently not available for different architectures). An efficient evaluation of97

model equations is of utmost importance. For instance, very often more than 85% of the total98

integration time is spent on evaluation of equations and derivatives (Nikolić, 2018). Since most of99

the modern computers and many specially designed clusters are equipped with additional stream100

processors/accelerators such as Graphics Processing Units (GPU), Field Programmable Gate101

Arrays (FPGA) and manycore processors (Xeon Phi), the simulation software must be specially102

designed to effectively take advantage of multiple architectures. While parallel evaluation of103

model equations on general purpose processors is fairly straightforward and different techniques104

are applied by different simulators, evaluation on streaming processors is rather difficult. Stream105

computing differs from traditional computing in that the system processes a sequential stream of106

elements: a kernel is executed on each element of the input stream and the result stored in an107
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output stream. Thus, the data structures representing the model equations must be designed to108

support evaluation on both systems (often simultaneously in heterogeneous computing setups).109

To this end, the Open Compute Stack (OpenCS) framework has been develop to provide:110

1. Model specification data structures for a platform-independent description of general111

ODE/DAE systems of equations112

2. A platform-independent method to describe, store in computer memory and evaluate113

general systems of equations of any size on diverse types of computing devices114

3. An Application Programming Interface (API) for model specification, parallel evaluation115

of model equations, model exchange and a generic interface to ODE/DAE solvers116

4. Algorithms for partitioning of general systems of equations and inter-process data exchange117

(for simulations on distributed memory systems)118

5. Simulation software for parallel numerical solution of general ODE/DAE systems of119

equations on shared and distributed memory systems120

This way, the OpenCS framework offers a common platform for specification of equation-based121

models, parallel evaluation of equations on diverse types of computing devices, model exchange122

and parallel simulation of large-scale systems of differential equations on shared and distributed123

memory systems.124

OpenCS is free software released under the GNU Lesser General Public Licence. The125

installation packages, compilation instructions and more information about the OpenCS software126

can be found on the DAE Tools website (http://www.daetools.com/opencs.html). The source code127

is available from the SourceForge subversion repository: https://sourceforge.net/p/daetools/code128

and located in the trunk/OpenCS directory.129

The framework is based on the methodology for parallel numerical solution of general systems130

of non-linear differential and algebraic equations on heterogeneous and distributed memory131

systems presented in Nikolić (2018, 2019). In the OpenCS approach, the model specification132

contains only the low-level information directly required by solvers. The model equations are133

transformed into the Reverse Polish (postfix) notation and stored as an array of binary data134

(a Compute Stack) for direct evaluation on all platforms with no additional processing nor135

compilation steps. The OpenCS model specification, represented by a Compute Stack Model,136

provides a common interface to ODE/DAE solvers and can be generated using the OpenCS API137

in two ways (Fig. 2): (a) direct implementation in C++ and (b) export of existing models from138

third-party simulators. Individual equations (Compute Stacks) are evaluated by a stack machine139

(Compute Stack Machine) using the Last In First Out (LIFO) queues. Systems of equations are140

evaluated in parallel using a Compute Stack Evaluator interface which manages the Compute141

Stack Machine kernels. Two APIs/frameworks are used for parallelism: (a) the Open Multi-142

Processing (OpenMP) API for parallelisation on general purpose processors (multi-core CPUs,143

Xeon Phi), and (b) the Open Computing Language (OpenCL) framework for parallelisation on144

streaming processors (GPU, FPGA) and heterogeneous systems (CPU+GPU, CPU+FPGA).145
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Figure 2. The OpenCS modelling approach. The (low-level) model specification is created
using the OpenCS API and stored in a Compute Stack Model data structure which provides a
generic interface to ODE/DAE solvers. Model equations, transformed into the postfix notation
and stored as an array of binary data, are evaluated using the Compute Stack Machine kernels
managed by a Compute Stack Evaluator.

A generic simulation software has been provided by the framework to utilise the low-level146

information stored in Compute Stack Models (Nikolić, 2019). Simulations can be executed147

sequentially on a single processor or in parallel on message passing multiprocessors, where every148

processing element integrates one part (sub-system) of the overall ODE/DAE system in time and149

performs an inter-process communication between the processing elements (Fig. 3). Simulation150

inputs are specified in a generic fashion as files in a (platform independent) binary format. The151

input files are generated using the OpenCS API (one set per processing element) and contain the152

serialised model specification data structures and solver options. This way, the OpenCS model153

specification stored in input files is used as a simple binary interface for model exchange. This154

approach differs from the typical model-exchange/co-simulation interfaces in that it does not155

require a human or a machine readable model definition as in modelling and model-exchange156

languages such as Modelica and CellML (https://www.cellml.org) nor a binary interface (C API)157

implemented in shared libraries as in Simulink (The MathWorks, Inc., 2018b) and Functional158

Mock-up Interface (https://www.fmi-standard.org). For instance, the model equations in OpenCS159

are specified as an array of binary data for direct evaluation on all platforms with no additional160

processing steps. However, it must be kept in mind that the main purpose is an exchange of161

individual large-scale models whose equations can be evaluated on different computing devices162

and which can be simulated on different high-performance computing platforms. Although163

technically possible, use of OpenCS models as building blocks in other simulators is not the164

major goal of OpenCS.165
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Figure 3. Parallel simulation on distributed memory systems using the OpenCS framework

The OpenCS framework offers the numerous benefits. A single software is used for numerical166

solution of any system of differential and algebraic equations (ODE or DAE) of any size and167

on all platforms. The model specification contains only the low-level model description and168

therefore can be generated from any modelling software. The model specification data structures169

are stored as files in a binary format and used as inputs for parallel simulations on all platforms.170

Model equations are specified in a platform and programming language independent fashion171

as an array of binary data. Equations of any type (differential or algebraic) and any size are172

supported and can be evaluated on virtually all computing devices (including heterogeneous173

systems). Switching to a different computing platform for evaluation of model equations is174

straightforward and controlled by an input parameter.175

OpenCS model description is created using the OpenCS API in two ways: direct implemen-176

tation in C++ or export of existing models from third-party simulators. The most important177

use-cases scenarios of the OpenCS framework include:178

1. Universal parallel simulations on shared and distributed memory systems179

2. Parallel evaluation of model equations (i.e. in simulators with no support for parallel180

evaluation or using the computing devices which are currently not utilised)181

3. Model-exchange182

4. Use as a simulation engine behind Modelling or Domain Specific Languages183

In addition, since the common model-specification in a binary format is used on all platforms,184

OpenCS models can be used for benchmarks between different simulators, ODE/DAE solvers,185

individual computing devices (i.e. to compare memory and computation performance during eval-186

uation of equations) and high performance computing systems. For example, benchmarks between187

heterogeneous CPU+GPU and CPU+FPGA clusters are now possible without re-implementation188

of the model for a completely different architecture: in the OpenCS approach, the same data are189

used to evaluate equations on all computing devices.190

The article is organised in the following way. First, the methodology, key concepts, data struc-191

tures, API and implementations are presented. Next, the typical use-case scenarios accompanied192

with the sample ODE/DAE problems are analysed. Finally, a summary of the most important193

capabilities of the OpenCS framework and directions for future work are given in the last section.194
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METHODS195

The framework is based on the methodology for parallel numerical solution of general systems of196

differential and algebraic equations on heterogeneous and distributed memory systems presented197

in Nikolić (2018, 2019). The methodology consists of the following parts:198

1. A method for transformation of model equations into a data structure suitable for parallel199

evaluation on different computing platforms (the Compute Stack approach)200

2. Data structures for model specification201

3. An algorithm for partitioning of general systems of equations202

4. An algorithm for inter-process data exchange203

5. Simulation software for integration of general ODE/DAE systems in time204

The key concepts and data structures205

The methodology is based on several concepts, each providing a distinct functionality:206

Compute Stack The Reverse Polish (postfix) notation expression stack used as a platform207

and programming language independent method to describe, store in computer memory208

and evaluate equations of any type and any size (Nikolić, 2018). Compute Stacks are209

automatically generated from equations in infix notation using the OpenCS API.210

Compute Stack Machine A stack machine used to evaluate a single equation (that is a single211

Compute Stack) using LIFO queues (function evaluateComputeStack in the supplemental212

source code listing S1).213

Compute Stack Evaluator An interface for parallel evaluation of systems of equations (csCom-214

puteStackEvaluator_t class in the supplemental source code listing S2).215

Compute Stack Model Data structure that serves as the main storage for the model specification216

and includes the information required for numerical solution, either sequentially or in217

parallel (csModel_t data structure in the supplemental source code listing S3). In general,218

it can be used to describe a system of equations of any type.219

Compute Stack Differential Equations Model An abstract class that provides: (a) a model220

exchange interface, and (b) a generic interface to ODE/DAE solvers (csDifferentialEqua-221

tionModel_t class in the supplemental source code listing S4).222

Compute Stack Simulator Software for sequential and parallel simulation of general ODE and223

DAE systems in time (csSimulator).224

Compute Stack Model Builder An interface that provides an API for model specification, an225

algorithm for partitioning of general systems of equations with multiple load balancing226

constraints, generation and export of Compute Stack models (csModelBuilder_t class in227

the supplemental source code listing S5).228

Compute Stack Number A user-defined Real number class for creation of mathematical ex-229

pressions representing the model equations (csNumber_t class in the supplemental source230

code listing S6). Equations are specified in infix notation and transformed into the Compute231

Stacks using the operator overloading technique. It is based on the same principles as the232

Evaluation Tree data structure described in Nikolić (2018), and provides the following233

functionality: (a) standard mathematical operations and functions (re-defined to operate on234

the csNumber_t objects), (b) evaluation of equations, (c) export into the LaTex format, and235

(d) generation of Compute Stack arrays.236

Compute Stack Graph Partitioner An interface for partitioning of graphs utilised by the parti-237

tioning algorithm in the Model Builder (csGraphPartitioner_t in the supplemental source238

code listing S7).239
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Model equations240

In the Compute Stack approach, model equations are transformed into the Reverse Polish (postfix)241

notation (Nikolić, 2018). Each mathematical operation and its operands are described by a242

specially designed csComputeStackItem_t data structure and every equation is transformed into an243

array of these structures (a Compute Stack). In general, any type of expressions involving standard244

mathematical operators and functions, numerical constants, variables and their derivatives are245

supported (linear or non-linear, algebraic or differential equations). Most of the functions from C246

numerics library (the <math.h> header) are available such as: unary (+, -) and binary operators247

(+, -, * and /), and unary and binary functions (sqrt, pow, log, log10, exp, min, max, floor, ceil,248

abs, sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh, atan2 and erf).249

Individual equations are evaluated by a stack machine (Compute Stack Machine) using a Last250

In First Out queue. Due to its simplicity, equations can be evaluated on virtually all computing251

devices (Nikolić, 2018). Since the model equations are stored as an array of binary data they252

can be directly evaluated on all platforms with no additional processing nor compilation steps.253

An overview of the Compute Stack Machine and the required input data are given in Fig. 4. As254

inputs, it requires the evaluation context object with the run-time information, a Compute Stack255

array as a stream of contiguous data and random access data arrays with variable values (x), time256

derivatives (dx/dt) and degrees of freedom (y).257

Figure 4. The Compute Stack Machine for evaluation of general F(x, dx
dt ,y) expressions

specified as Compute Stacks. x, dx/dt and y are arrays with variable values, time derivatives and
degrees of freedom, respectively. The inputs are the evaluation context object with the run-time
information, a Compute Stack array as a stream of contiguous data and three random access
arrays (x, dx/dt and y).

Systems of equations are stored in memory as a single one-dimensional array of csComputeS-258

tackItem_t objects populated with Compute Stacks from all equations. Parallel evaluation of259

systems of equations is performed through a common interface called a Compute Stack Evaluator.260

Two implementations are available: (a) the OpenMP API is used for parallelisation on general261

purpose processors, and (b) the OpenCL framework is used for parallelisation on streaming262

processors and heterogeneous systems. In the OpenMP implementation, every thread evaluates a263
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chunk of the total number of equations, one at the time. In the OpenCL implementation, every264

work-item evaluates only a single equation. Each thread/work-item executes a for loop where265

mathematical operations are performed in a single IF block controlled by the type of mathematical266

operation.267

Model specification data structures268

In the OpenCS approach, the model specification contains only the low-level information directly269

required by ODE/DAE solvers, stored in the csModel_t data structure (Nikolić, 2019). For270

sequential simulations, the system is described by a single csModel_t object. For parallel271

simulations, the system is described by an array of csModel_t objects each holding information272

about one ODE/DAE sub-system. Every model contains the following data: (a) the model273

structure with the information about the variable names, types, absolute tolerances and initial274

conditions: csModelStructure_t structure, (b) the model equations represented by Compute Stack275

arrays: csModelEquations_t structure, (c) the sparsity pattern of the ODE/DAE (sub-) system276

(required for evaluation of derivatives): csSparsityPattern_t structure, (d) the partition data277

(used for inter-process communication): csPartitionData_t structure, and (e) the Compute Stack278

evaluator instance: csComputeStackEvaluator_t object. Models are created using the Compute279

Stack Model Builder that provides an API for model specification and hides the implementation280

details of the OpenCS framework.281

Model exchange capabilities and an interface to ODE/DAE solvers are provided by the282

csDifferentialEquationModel_t class. It contains an instance of the csModel_t class and functions283

for loading of models from input files, retrieving the information and the sparsity pattern of the284

ODE/DAE system, setting the variable values/derivatives, exchanging the adjacent variables285

among the processing elements using the MPI interface, and evaluating equations and derivatives.286

Partitioning of general systems of equations287

Large-scale numerical simulations on parallel computers require the distribution of equations288

among the processing elements so that the duration of each phase of the numerical solution is289

approximately the same. Therefore, the workload (storage and computation) in each phase and290

the inter-process communication volume must be well balanced among the processing elements291

for maximum performance. Computationally the most intensive phases of the numerical solution292

are: (1) evaluation of equations, (2) solution of systems of linear equations, and (3) evaluation293

of derivatives. Combined, they amount to more than 95% of the total integration time (Nikolić,294

2018). Since it is critical that every processor have an equal amount of work from each phase of295

the computation, the multiple quantities must be load balanced simultaneously.296

The algorithm for partition of general systems of equations is described in Nikolić (2019). In297

the OpenCS framework, this algorithm is improved and re-implemented in C++ (for performance298

reasons). In the original algorithm, a graph of the ODE/DAE system is constructed and always299

partitioned using the METIS library (Karypis and Kumar, 1995). In this work, the graph300

partitioning is performed by the Compute Stack Graph Partitioner interface (csGraphPartitioner_t301

class) and separated from the main algorithm. This way, the algorithm can support the user-defined302

graph partitioners to exploit a problem-specific structure of model equations. At the moment,303

the following graph partitioner implementations are available: (1) Simple graph partitioner304

(csGraphPartitioner_Simple) - splits a graph into the specified number of partitions with no305

load balancing analysis (i.e. used for generation of Compute Stack models for sequential306

simulations), and (2) Metis graph partitioner (csGraphPartitioner_Metis) - partitions the graphs307
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into a user-specified number k of parts using either the Multilevel k-way partitioning paradigm308

or the Multilevel recursive bisectioning paradigm implemented in METIS. (3) 2D-Npde graph309

partitioner (csGraphPartitioner_2D_Npde) - partitions the specified number of partial differential310

equations (Npde) distributed on a uniform two-dimensional grid by dividing the grid into the311

requested number of regions. The partitioning algorithm applies a static load balancing method.312

The workloads can be accurately and precisely estimated by taking into consideration several313

properties of equations and partitions. The partition properties used by the algorithm are: number314

of equations (Neq), number of adjacent variables (Nad j), number of items in the Compute Stack315

array (Ncs), number of non-zero items in the partition’s incidence matrix (Nnz), number of316

floating point operations (FLOPs) required for evaluation of equations (N f lops), and number of317

FLOPs required for evaluation of derivatives (N f lops_ j). The memory and computation workloads318

in individual phases can be estimated using the partition properties as discussed in (Nikolić,319

2019). Ncs, Nnz, N f lops and N f lops_ j can be specified as additional balancing constraints for the320

graph partitioning. In particular, the number of FLOPs required for evaluation of equations321

and derivatives, that is the computation load, can be very accurately estimated by analysing322

the Compute Stack arrays. Moreover, the partitioning algorithm accepts a pair of dictionaries323

specifying the number of FLOPs for individual unary and binary mathematical operations (Nikolić,324

2019). For instance, evaluation time of trigonometric functions on a traditional CPU is different325

from the evaluation time on a GPU. Thus, the algorithm can produce the load balanced partitions326

for diverse types of computing devices.327

Partitioning of systems of equations in some cases is problem-specific and the generic graph328

partitioners often produce partitions with the excellent balance of workloads but poor overall329

simulation performance. The reason for this is the structure of partitions resulting in inefficient330

preconditioners and a high number of iterations to reach convergence in the linear solver, as331

discussed in Nikolić (2019). Therefore, custom user-defined partitioners are required to take332

advantage of a problem-specific structure of model equations (i.e. the systems produced by333

discretisation of well known partial-differential equations on uniform grids and the systems which334

require the coupled treatment of all differential equations to ensure conservation such as the335

compressible Euler and incompressible Navier-Stokes equations).336

Inter-process data exchange337

Numerical solution on distributed memory systems requires an inter-process communication338

routine for exchange of adjacent unknowns (unknowns that belong to other processing elements).339

The algorithm for data exchange among processing elements is simple and only the point-to-point340

communication routines are required (Nikolić, 2019). It is fully generic and utilises the data341

resulting from the partitioning algorithm stored in the csPartitionData_t data structure.342

Generic simulation software343

The OpenCS framework provides a simulator for integration of general systems of differential344

equations in time (csSimulator) which can simulate both ODE and DAE systems (Nikolić, 2019).345

The simulator is cross-platform and can be executed sequentially on a single processor or in346

parallel on message passing multiprocessors. Simulation inputs are specified in a platform-347

independent way using input files with the model specification and run-time options. This way,348

the same model can be simulated using the same software on all platforms.349

An overview of the solution procedure on shared memory systems is given in Fig. 5. The350

solution process consists of: (1) numerical integration in time, (2) linear algebra operations, (3)351
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solution of systems of linear equations (in general, iterative methods are used for large scale352

systems), (4) (optionally) integration of sensitivity equations. The Compute Stack Evaluator is353

utilised by the Compute Stack Model for parallel evaluation of equations residuals (DAE systems)354

or the right hand side (ODE systems), and for evaluation of derivatives required for computation355

of the preconditioner and integration of sensitivity equations. Depending on the simulation356

options, the Compute Stack Evaluator can utilise a single or multiple computing devices.357

The parallel solution on distributed memory systems requires the same tasks, but applied358

to integration of only one part of the overall system (ODE/DAE sub-system). Therefore, the359

software for numerical solution on shared memory systems is used as the main building block for360

distributed memory systems as depicted in Fig. 6. The additional functionality that is required361

includes: (a) an inter-process communication routine for exchange of adjacent unknowns, and (b)362

linear algebra routines for distributed memory systems (already available from the SUNDIALS363

suite). Both routines are implemented using the MPI C interface.364

For integration of DAE systems in time the software uses the variable-step variable-order365

backward differentiation formula available in SUNDIALS IDAS solver (Hindmarsh et al., 2005).366

For integration of ODE systems in time the software uses the variable-step variable-order Adams-367

Moulton and backward differentiation formulas available in SUNDIALS CVodes solver (Serban368

and Hindmarsh, 2005). Systems of linear equations are solved using the Krylov-subspace iterative369

methods. At the moment, the generalised minimal residual solver from the SUNDIALS suite is370

available. Both solvers utilise preconditioners available from the Trilinos suite (Heroux et al.,371

2005): IFPACK, ML and AztecOO built-in preconditioners. Evaluation of model equations and372

derivatives is performed through the Compute Stack Evaluator interface.373

Simulation inputs are specified using the data files with the serialised model specification374

data structures. The list of input files (one set for every processing element) is given in Table375

1. PE in file names is an integer identifying the processing element equal to the value returned376

from MPI_Comm_rank function. For sequential simulations a single set of input files is required.377

Each file contains a serialised data structure member of the csModel_t class: csModelStructure_t,378

csModelEquations_t, csSparsityPattern_t and csPartitionData_t. While the model specification379

remains unaltered, simulations can be performed for different time horizons, different solver and380

preconditioner options and using different computing devices for evaluation of model equations.381

Thus, the simulation options are specified in a human readable JSON format. and contain382

four sections: “Simulation“ (run-time data), “Model“ (ODE/DAE model options), “Solver“383

(options for the ODE/DAE solver) and “LinearSolver“ (the linear solver and the preconditioner384

options). Names of the solver/preconditioner parameters are identical to the original names used385

by the corresponding libraries or to the names of Set_ functions (i.e. the MaxOrd parameter386

specified using the IDASetMaxOrd function in the SUNDIALS suite). The typical content of the387

simulation_option.json file for ODE and DAE problems are given in the supplemental source388

code listings S8 and S9, respectively.389

Simulation results are saved in Comma Separated Value (.csv) format into the output directory390

specified by the Simulation.OutputDirectory option. In addition, the detailed solvers statistics is391

generated for every processing element and saved in JSON format into the output directory.392
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Figure 5. OpenCS simulation on shared memory systems

Figure 6. OpenCS simulation on distributed memory systems

Table 1. Input data files for OpenCS simulations.

Input file Contents
model_structure-[PE].csdata Serialised csModelStructure_t data structure
model_equations-[PE].csdata Serialised csModelEquations_t data structure
sparsity_pattern-[PE].csdata Serialised csSparsityPattern_t data structure
partition_data-[PE].csdata Serialised csPartitionData_t data structure
simulation_options.json Simulation, DAE and linear solver parameters
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APPLICATION PROGRAMMING INTERFACE393

The OpenCS framework provides an Application Programming Interface for model specifi-394

cation and typical use case scenarios such as (1) parallel evaluation of model equations, (2)395

model exchange, (3) simulation on shared memory systems, and (4) simulation on distributed396

memory systems. The key concepts of the OpenCS framework and the corresponding API are397

implemented in the following libraries: (1) cs_machine.h (header-only Compute Stack Machine398

implementation in C99), (2) libOpenCS_Evaluators (sequential, OpenMP and OpenCL Compute399

Stack Evaluator implementations), (3) libOpenCS_Models (Compute Stack Model, Compute400

Stack Differential Equations Model and Compute Stack Model Builder implementations), (4)401

libOpenCS_Simulators (Compute Stack ODE and DAE Simulator implementations) and a stan-402

dalone simulator csSimulator (for both ODE and DAE problems). The framework internally403

utilise computing devices for evaluation of model equations and performs file system I/O oper-404

ations and inter-process communication using the MPI interface (in parallel simulations). The405

structure and the main components of the framework are illustrated in Fig. 7.406

Figure 7. The structure and the main components of the OpenCS framework

Model specification407

In the OpenCS framework, models are developed using the Model Builder interface (csModel-408

Builder_t class). The model equations can be specified in C++ application programs or exported409

from existing models in third party simulators. The procedure is identical for all models in both410

cases. For simulations on shared memory systems it includes the following steps (source code411

listing 1):412

Step 1. Initialise the model builder with the number of variables and the number of degrees of413

freedom. Other options such the default variable value, absolute tolerance, and variable414

name can be optionally set.415
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Step 2. Create model equations using the provided csNumber_t objects representing variables,416

their time derivatives and degrees of freedom. csNumber_t is a user-defined Real number417

class providing all standard mathematical operators and functions as in the C numerics418

library (<math.h> header). This way, the equations are specified in the same way as in419

C/C++.420

Step 3. Set the initial conditions. For DAE problems a consistent set of initial conditions will be421

calculated before simulation.422

Step 4. Generate Compute Stack models by partitioning the system of equations. For simulations423

on shared memory systems the model is partitioned into a single partition. For simulations424

on message passing mulltiprocessors the system is partitioned into a specified number of425

partitions (one per processing element). Typically, the Simple graph partitioner is used by426

the partitioning algorithm for sequential simulations.427

Step 5. Use the generated model(s) directly or export them into a specified directory.428

For parallel simulations on distributed memory systems the procedure is identical. The only429

difference is in the Step 4. where the system is partitioned using the METIS or a user-defined430

graph partitioner. The graph partitioning procedure for parallel simulations includes the following431

steps (source code listing 2):432

Step 4.2 Instantiate METIS or a user-defined graph partitioner. In Metis, two algorithms are433

available: (1) PartGraphKway (Multilevel k-way partitioning algorithm), and (2) Part-434

GraphRecursive (Multilevel recursive bisectioning algorithm). Optionally, change the435

default options of the partitioning algorithm.436

Step 4.2.1 Specify the load balancing constraints. Four additional balancing constraints437

are available: Ncs, Nnz, N f lops and N f lops_ j. For example, Ncs and N f lops can be used438

to balance the memory load (proportional to the number of Compute Stack items,439

Ncs) and the computation load for evaluation of model equations (proportional to the440

number of FLOPs for evaluation of equations, N f lops).441

Step 4.2.2 Set the graph partitioner options (METIS specific).442

Step 4.2.3 By default, the partitioning algorithm assumes that all mathematical operations443

require a single FLOP. This behaviour can be changed by specifying a pair of444

dictionaries with a number of FLOPs for individual mathematical operations: (1)445

unaryOperationsFlops for unary operators (+, -) and functions (sqrt, log, log10, exp,446

sin, cos, tan, ...), and (2) binaryOperationsFlops for binary operators (+, -, *, /) and447

functions (pow, min, max, atan2). If a mathematical operation is not in the dictionary,448

it is assumed that it requires a single FLOP. This way, the total number of FLOPs449

can be accurately estimated for every computing device.450

Step 4.3 Partition the system into the specified number of processing elements (Npe).451
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Listing 1. Model specification procedure for simulation on shared memory systems (DAE
problem)� �

452
/* 1. Initialise the model builder with the number of variables453

* and the number of degrees of freedom in the DAE system. */454
csModelBuilder_t mb;455
uint32_t Nvariables = ...;456
uint32_t Ndofs = ...;457
mb.Initialize_DAE_System(Nvariables, Ndofs);458

459
/* 2. Create and set model equations using the provided objects. */460
const csNumber_t& time = mb.GetTime();461
const std::vector<csNumber_t>& x = mb.GetVariables();462
const std::vector<csNumber_t>& dx_dt = mb.GetTimeDerivatives();463
const std::vector<csNumber_t>& y = mb.GetDegreesOfFreedom();464

465
std::vector<csNumber_t> equations(Nvariables);466
for(uint32_t i = 0; i < Nvariables; i++)467

equations[i] = F(x, dx_dt, y, time); <−− MODEL SPECIFIC CODE468
469

mb.SetModelEquations(equations);470
471

/* 3. Set the initial conditions. */472
std::vector<real_t> x0(Nvariables, 0.0);473
for(uint32_t i = 0; i < Nvariables; i++)474

x0[i] = ...; <−− MODEL SPECIFIC CODE475
476

mb.SetVariableValues(x0);477
478

/* 4. Generate Compute Stack models by partitioning the DAE system.479

* In this case a single model for a sequential simulation is generated. */480
/* 4.1 Specify the output directory and simulation options. */481
std::string inputFilesDirectory = "...";482
std::string simulationOptions = "...";483

484
/* 4.2 Instantiate the graph partitioner. */485
csGraphPartitioner_Simple partitioner;486

487
/* 4.3 Partition the DAE system to generate a single Compute Stack model. */488
std::vector<csModelPtr> cs_models = mb.PartitionSystem(1, &partitioner);489

490
/* 5. Export the model(s) into a specified directory (or use them directly). */491
mb.ExportModels(cs_models, inputFilesDirectory, simulationOptions);492 � �493

Listing 2. Graph partitioning for simulation on distributed memory systems� �
494

/* 4.2 Instantiate METIS graph partitioner. */495
csGraphPartitioner_Metis partitioner(PartGraphRecursive);496

497
/* Change the input arguments of the partitioning algorithm. */498
/* 4.2.1 Specify the load balancing constraints (optional). */499
std::vector<std::string> balancingConstraints = {"Ncs", "Nflops"};500

501
/* 4.2.2 Set the METIS partitioner options (optional). */502
std::vector<int32_t> options = partitioner.GetOptions(); /* default values */503
options[METIS_OPTION_NITER] = 10;504
options[METIS_OPTION_UFACTOR] = 30;505
partitioner.SetOptions(options);506

507
/* 4.2.3 Specify the number of FLOPs for mathematical operations (optional). */508
std::map<csUnaryFunctions,uint32_t> unaryOperationsFlops;509
std::map<csBinaryFunctions,uint32_t> binaryOperationsFlops;510
unaryOperationsFlops[eSqrt] = 12; /* i.e. the sqrt function requires 12 FLOPs */511
binaryOperationsFlops[eDivide] = 6; /* i.e. the operator / requires 6 FLOPs */512

513
/* 4.3 Partition the system to generate Npe models (one per processing element). */514
std::vector<csModelPtr> cs_models = mb.PartitionSystem(Npe, &partitioner,515

balancingConstraints,516
true,517
unaryOperationsFlops,518
binaryOperationsFlops);519 � �520
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Model exchange and parallel evaluation of model equations521

The main goal of the OpenCS framework is specification of large scale equation-based models522

for simulation on shared and distributed memory systems. In addition, the developed models can523

also be used for model-exchange and for parallel evaluation of model equations (to improve the524

simulation performance in existing simulators). The Compute Stack Differential Equations Model525

is used for loading a model into a host simulator and as a common interface to the data required526

for integration in time by ODE/DAE solvers (i.e. evaluation of equations and derivatives). The527

procedure is identical in both cases and includes the following steps (source code listing 3):528

Step 1. Initialise MPI.529

Step 2. Instantiate the csDifferentialEquationModel object (a reference implementation of the530

csDifferentialEquationModel_t interface).531

Step 3. Load the model from the specified directory with input files (or use the existing Compute532

Stack Models directly).533

Step 4. Instantiate and set the Compute Stack Evaluator. In this example the OpenMP Compute534

Stack Evaluator is used. It accepts the number of threads as an argument in its constructor.535

If zero is specified, the default number of threads will be used (typically equal to the536

number of cores).537

Step 5. Obtain the necessary information from the model such as the number of variables,538

variable names, types, absolute tolerances, initial conditions and the sparsity pattern in the539

Compressed Row Storage (CRS) format.540

Step 6. Evaluate model equations and derivatives (typically in a loop).541

Step 6.1 Set the current values of state variables and derivatives using the SetAndSynchro-542

niseData function. At this point, for simulations on message passing multiprocessors543

the MPI interface will be used to exchange the adjacent unknowns between process-544

ing elements.545

Step 6.2 Evaluate equations residuals (for DAE problems) or a Right Hand Side (for ODE546

problems) using the EvaluateEquations function.547

Step 6.3 Evaluate derivatives (the Jacobian matrix) using the EvaluateJacobian function.548

Here, csMatrixAccess_t is used as a generic interface to the sparse matrix storage in549

linear solvers. inverseTimeStep is an inverse of the current step taken by the solver.550

SetAndSynchroniseData should be called only before a call to the EvaluateEqua-551

tions function. It is assumed that a call to SetAndSynchroniseData has already been552

performed and the current values set and exchanged between processing elements.553

This is a typical procedure in ODE/DAE solvers where the model equations are554

always evaluated first and then, if required, the derivatives evaluated and a precondi-555

tioner recomputed (in iterative methods) or the Jacobian matrix re-factored (in direct556

methods).557

Step 7. Free the resources allocated in the model and the evaluator.558

Step 8. Finalise MPI.559
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Listing 3. Procedure for model exchange� �
560

/* 1. Initialise MPI. */561
int rank;562
MPI_Init(&argc, &argv);563
MPI_Comm mpi_world = MPI_COMM_WORLD;564
MPI_Comm_rank(MPI_COMM_WORLD, &rank);565

566
/* 2. Instantiate the Compute Stack model. */567
csDifferentialEquationModel model;568

569
/* 3. Load the model from the specified directory with input files. */570
model.Load(rank, inputFilesDirectory);571

572
/* 4. Instantiate and set the Compute Stack Evaluator. */573
csComputeStackEvaluator_OpenMP evaluator(0);574
model.SetComputeStackEvaluator(&evaluator);575

576
/* 5. Get the model information (i.e. the sparsity pattern in CRS format). */577
int N, Nnz;578
std::vector<int> IA, JA;579
model.GetSparsityPattern(N, Nnz, IA, JA);580

581
/* 6. Evaluate model equations and derivatives (typically in a loop). */582
/* 6.1 Set the current values of state variables and derivatives. */583
model.SetAndSynchroniseData(time, x, dx_dt);584

585
/* 6.2 Evaluate residuals/Right Hand Side. */586
model.EvaluateEquations(time, residuals);587

588
/* 6.2 Evaluate derivatives (the Jacobian matrix). */589
model.EvaluateJacobian(time, inverseTimeStep, ma);590

591
/* 7. Free the resources allocated in the model and the evaluator. */592
model.Free();593

594
/* 8. Finalise MPI. */595
MPI_Finalize();596 � �597

Simulation on shared memory systems598

Simulation on shared memory systems is performed by embedding a simulation into a host simu-599

lator or using a standalone OpenCS simulator (csSimulator). Simulations using the standalone600

csSimulator are performed by executing the simulator with a single argument specifying the601

directory with input files. Embedded simulations are started using the OpenCS cs::Simulate602

function (the source code listing 4) or, if a user-defined schedule is required, using the OpenCS603

simulation API (the source code listing 5). In the latter case, the procedure includes the following604

steps:605

Step 1. Initialise MPI.606

Step 2. Load the simulation_options.json and get run-time options.607

Step 3. Instantiate model, simulation and ODE/DAE solver objects.608

Step 4. Load the model from the input directory.609

Step 5. Create and set the Compute Stack Evaluator. The application-specific evaluator can610

be instantiated or the information about the type of evaluator and its parameters can be611

obtained from the "Model.ComputeStackEvaluator" section.612

Step 6. Initialise the simulation.613

Step 7. Calculate corrected initial conditions at time = 0 (for DAE systems only).614

Step 8. Run the simulation using the default Run function or implement a custom schedule using615

the functions Integrate, IntegrateForTimeInterval and IntegrateUntilTime provided by the616

daeSimulation_t class.617

Step 9. Print the solver stats and finalise the simulation.618
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Step 10. Free the resources allocated in the model and the evaluator.619

Step 11. Finalise MPI.620

Listing 4. Simulation on shared memory systems using the Simulate function� �
621

/* 1. Initialise MPI. */622
MPI_Init(&argc, &argv);623

624
/* 2a. Run simulation using the input files from the specified directory: */625
cs::Simulate(inputFilesDirectory);626

627
/* 2b. Run simulation using an existing model: */628
csModelPtr model; // model is generated by the Model Builder629
std::string simulationOptions = ...; // options in JSON format630
std::string outputDirectory = ...; // a directory to store the simulation outputs631
cs::Simulate(model, simulationOptions, outputDirectory);632

633
/* 3. Finalise MPI. */634
MPI_Finalize();635 � �636

Listing 5. Simulation on shared memory systems using the simulation API� �
637

/* 1. Initialise MPI. */638
MPI_Init(&argc, &argv);639
int rank;640
MPI_Comm_rank(MPI_COMM_WORLD, &rank);641

642
std::string inputFilesDirectory = "...";643

644
/* 2. Load the simulation_options.json and get run−time options. */645
std::string simulationOptionsFile = inputFilesDirectory + "/simulation_options.json";646
daeSimulationOptions& cfg = daeSimulationOptions::GetConfig();647
cfg.Load(simulationOptionsFile);648

649
std::string outputDirectory = cfg.GetString("Simulation.OutputDirectory");650

651
/* 3. Instantiate model, simulation and ODE/DAE solver objects. */652
daeModel_t model;653
daeSolver_t daesolver;654
daeSimulation_t simulation;655

656
/* 4. Load the model from the input directory. */657
model.Load(rank, inputFilesDirectory);658

659
/* 5. Create and set the Compute Stack Evaluator660

* (in general, using the data from the "Model.ComputeStackEvaluator" section). */661
csComputeStackEvaluator_Sequential evaluator;662
model.SetComputeStackEvaluator(&evaluator);663

664
/* 6. Initialise the simulation. */665
simulation.Initialize(&model,666

&daesolver,667
startTime, timeHorizon, reportingInterval,668
outputDirectory);669

670
/* 7. Calculate corrected initial conditions at time = 0 (DAE systems only). */671
simulation.SolveInitial();672

673
/* 8. Run the simulation using the default Run function674

* (or implement a custom schedule). */675
simulation.Run();676

677
/* 9. Print the solver stats and finalise the simulation. */678
simulation.PrintStats();679
simulation.Finalize();680

681
/* 10. Free the resources allocated in the model and the evaluator. */682
model.Free();683

684
/* 11. Finalise MPI. */685
MPI_Finalize();686 � �687
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Simulation on distributed memory systems688

Simulation on distributed memory systems is typically performed using the standalone csSimula-689

tor and the parallel jobs are started using the commands specific to a particular implementation690

of the MPI standard. Examples for three different operating systems (GNU/Linux, Windows691

and macOS) and MPI implementations are given in the source code listing 6. Details on the692

available options for starting the parallel jobs can be found in the documentation of a particular693

implementation.694

Listing 6. Simulation on distributed memory systems using the standalone OpenCS simulator� �
695

# 1. GNU/Linux (i.e. using OpenMPI)696
# On a local machine:697
$ mpirun −np <Npe> csSimulator "inputFilesDirectory"698
# On multiple nodes:699
$ mpirun −−hostfile <hostfilename> −np <Npe> csSimulator "inputFilesDirectory"700

701
# 2. Windows (i.e. using MS−MPI):702
# On a local machine:703
$ mpiexec /np <Npe> csSimulator "inputFilesDirectory"704
# On multiple nodes:705
$ mpiexec /gmachinefile <hostfilename> /np <Npe> csSimulator "inputFilesDirectory"706

707
# 3. macOS (i.e. using MPICH):708
# On a local machine:709
$ mpiexec −n <Npe> csSimulator "inputFilesDirectory"710
# On multiple nodes:711
$ mpiexec −f <hostfilename> −n <Npe> csSimulator "inputFilesDirectory"712 � �713

APPLICATIONS714

Case 1: transient two-dimensional diffusion-reaction equations, uniform grid715

The model describes the process of auto-catalytic chemical reaction with oscillations known as the716

Brusselator PDE. The net reaction is A+B→ D+E with transient appearance of intermediates717

X and Y, where A and B are reactants and D and E are products (Strogatz, 1994). The model is718

originally implemented using SUNDIALS IDAS suite (Serban and Hindmarsh, 2016). Under719

conditions where components A and B are in vast excess during the chemical reaction the system720

dynamics is described by the following equations:721

du
dt

= k1

(
∂ 2u
∂x2 +

∂ 2u
∂y2

)
+Ru(u,v, t)

dv
dt

= k2

(
∂ 2v
∂x2 +

∂ 2v
∂y2

)
+Rv(u,v, t)

(1)

where the reaction rates Ru and Rv are defined as:722

Ru(u,v, t) = u2v− (B+1)u+A

Rv(u,v, t) =−u2v+Bu
(2)

Here, k1 and k2 are diffusion constants, A and B are the concentrations of components A and723

B, and u and v are concentration of intermediaries X and Y. The equations are distributed724

on the square domain x ∈ [0,10] and y ∈ [0,10] and discretised by central differencing on a725

uniform 1000x1000 spatial mesh resulting in 2,000,000 unknowns. The boundary conditions726

are homogeneous Neumann (no normal flux at boundaries). The initial conditions are given727

by: u(x,y, t0) = 1.0− 0.5cos(πy) and v(x,y, t0) = 3.5− 2.5cos(πx). The concentrations of728
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components A and B and the diffusion constants are held constant (A = 1, B = 3.4, k1 = k2 =729

0.002). The relative and absolute tolerances for all unknowns are set to 10−5. The system is730

simulated for 10 seconds and the outputs are taken every 0.1 second. The C++ source code and731

the compilation and usage instructions are given in the Supplemental Listing S10 and on the732

OpenCS website (dae_example_3, http://www.daetools.com/opencs-tutorials.html).733

Five different runs have been performed (Table 2). The first four runs are simulated on a734

single CPU. Model equations are evaluated sequentially in run C1-SEQ, using the OpenMP API735

in C1-OMP (8 core CPU), and using the OpenCL framework in C1-CL (single device setup, all736

equations evaluated on a GPU) and C1-CLx2 (heterogeneous CPU/GPU setup where 70% of737

equations are evaluated on GPU and 30% on CPU). In C1-MPI run the system is partitioned738

by dividing the 2D mesh into eight quadrants, the simulation carried out on 8 CPUs using MPI739

interface and equations evaluated sequentially in every processing element. The DAE system740

is integrated in time using the variable-step variable-order backward differentiation formula741

from SUNDIALS IDAS solver (Hindmarsh et al., 2005). Systems of linear equations are solved742

using the SUNDIALS generalised minimal residual solver (GMRES) and the IFPACK (Sala743

and Heroux, 2005) ILU preconditioner from Trilinos suite (in the original IDAS model the744

band-block-diagonal preconditioner has been applied). The input parameters for the IFPACK745

preconditioner are given in Table 3 where k is the fill-in factor, α is the absolute threshold, ρ is746

the relative threshold and ω is the relax value. The simulations are carried out in 64-bit Debian747

Stretch GNU/Linux and compiled using the gcc 6.3 compiler, OpenCS 1.1.0, MPI-3.1 from the748

Open MPI v2.0.2 package, OpenMP 4.5 from the GOMP library, and OpenCL 1.2 from NVidia749

CUDA 9.0 with v384.90 display driver. The hardware configuration consists of Intel i7-6700HQ750

CPU (4 cores/8 threads at 2.6 GHz, 8 GB of RAM, 34.32 GFLOPs peak double precision) and751

a discrete NVidia GeForce GTX 950M GPU (640 execution units at 914 MHz, 2 GB of RAM,752

36.56 GFLOPs peak double precision).753

Table 2. Case 1: Simulation runs

Run Simulation Evaluation of model equations
C1-SEQ 1 CPU Sequential
C1-OMP 1 CPU OpenMP (8 threads)
C1-CL 1 CPU Single device OpenCL (100% on GPU)
C1-CLx2 1 CPU Heterogeneous OpenCL (70% on GPU, 30% on CPU)
C1-MPI 8 CPUs Sequential on every PE

Table 3. Case 1: IFPACK ILU preconditioner parameters

Run k ρ α ω

C1-SEQ 3 1.0 0.1 0.5
C1-OMP 3 1.0 0.1 0.5
C1-CL 3 1.0 0.1 0.5
C1-CLx2 3 1.0 0.1 0.5
C1-MPI 1 1.0 0.1 0.0
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Case 2: transient two-dimensional convection-diffusion-reaction equations, uni-754

form grid755

The model describes the Chapman mechanism for ozone kinetics arising in athmospheric simula-756

tions (Schiesser and Lapidus, 1976). The reaction involves three components: ozone singlet (O),757

ozone (O3) and oxygen (O2), where the first two reactions are photo-chemical and contain diurnal758

rate coefficients. The model is originally presented in Wittman (1996) and implemented using759

SUNDIALS CVodes suite (Serban and Hindmarsh, 2015). The system dynamics is described by760

the following equations:761

dci

dt
= Kh

∂ 2ci

∂x2 +
∂

∂y

(
Kv(y)

∂ci

∂y

)
+V

∂ci

∂x
+Ri(c1,c2, t), i = 1,2 (3)

where the reaction rates R1 and R2 are given by:762

R1(c1,c2, t) =−q1c1c3−q2c1c2 +2q3(t)c3 +q4(t)c2

R2(c1,c2, t) = q1c1c3−q2c1c2−q4(t)c2
(4)

Here, c1, c2 and c3 are concentrations of O, O3 and O2, respectively, q1, q2, q3 and q4 are reaction763

rate coefficients, V is velocity, and Kh and Kv are diffusion coefficients. The numerical values of764

the input parameters are: V = 10−3, Kh = 4 ·10−6 and Kv(y) = 10−8 exp(0.2y). q1, q2 and c3 are765

constant (q1 = 1.63 ·10−16, q2 = 4.66 ·10−16, c3 = 3.7 ·1016) while q3 and q4 vary diurnally:766

q3(t) =

{
exp
(
−A3/sin(ωt)

)
, if sin(ωt)> 0

0, otherwise

q4(t) =

{
exp
(
−A4/sin(ωt)

)
, if sin(ωt)> 0

0, otherwise

(5)

where ω = π/43200 and A3 and A4 are coefficients (A3 = 22.62, A4 = 7.601). The equations are767

distributed on the square domain: x ∈ [0,20] km and y ∈ [30,50] km and discretised by central768

differencing on a uniform 1000x500 spatial mesh resulting in 1,000,000 unknowns. In the original769

CVodes model the equations were also discretised using the central differences, except for the770

advection term where a biased 3-point difference formula was used. The boundary conditions are771

homogeneous Neumann (no normal flux at boundaries). The initial conditions are given by:772

c1(x,y, t0) = 106
α(x)β (y)

c2(x,y, t0) = 1012
α(x)β (y)

α(x) = 1− (0.1(x− xmid))
2 +0.5(0.1(x− xmid))

4

β (y) = 1− (0.1(y− ymid))
2 +0.5(0.1(y− ymid))

4

(6)

where xmid = (0+20)/2 = 10 and ymid = (30+50)/2 = 40 are mid points of the x,y domains.773

The relative and absolute tolerances for all unknowns are set to 10−5. The system is integrated774

for 86,400 seconds (1 day) and the outputs are taken every 100 seconds. The C++ source code775

and the compilation and usage instructions are given in the Supplemental Listing S11 and on the776

OpenCS website (ode_example_3, http://www.daetools.com/opencs-tutorials.html).777

Five different runs have been performed (Table 4) identical to those in Case 1. In the run778

C2-MPI the system is partitioned by dividing the 2D mesh into eight quadrants. The ODE system779

is integrated in time using the variable-step variable-order backward differentiation formula780
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available in SUNDIALS CVodes solver (Serban and Hindmarsh, 2005). Systems of linear781

equations are solved using the SUNDIALS generalised minimal residual solver and the IFPACK782

(Sala and Heroux, 2005) ILU preconditioner from Trilinos suite (in the original CVodes model783

the 2x2 block-diagonal preconditioner has been applied). The input parameters for the IFPACK784

preconditioner for all runs are given in Table 5. The simulations are carried out using the same785

software and hardware as in Case 1.786

Table 4. Case 2: Simulation runs

Run Simulation Evaluation of model equations
C2-SEQ 1 CPU Sequential
C2-OMP 1 CPU OpenMP (8 threads)
C2-CL 1 CPU Single device OpenCL (100% on GPU)
C2-CLx2 1 CPU Heterogeneous OpenCL (70% on GPU, 30% on CPU)
C2-MPI 8 CPUs Sequential on every PE

Table 5. Case 2: IFPACK ILU preconditioner parameters

Run k ρ α ω

C2-SEQ 1 1.0 10−5 0.0
C2-OMP 1 1.0 10−5 0.0
C2-CL 1 1.0 10−5 0.0
C2-CLx2 1 1.0 10−5 0.0
C2-MPI 1 1.0 0.1 0.0
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RESULTS787

The numerical results are compared to the original SUNDIALS IDAS (Serban and Hindmarsh,788

2016) and CVodes (Serban and Hindmarsh, 2015) models. Comparison of the concentration789

u at the bottom-left point (x=0, y=0) between the OpenCS and the original IDAS model for790

two different operating regimes are presented in Fig. 8 (stable regime for B = 1.7) and Fig. 9791

(unstable regime for B = 3.4). Comparison of the concentration c1 at the bottom-left point (x=0,792

y=30) between the OpenCS and the original CVodes model is presented in Fig. 10.793

Four main and four sub-phases of the numerical solution have been analysed:794

1. EvaluateEquations – evaluation of model equations (residuals or right-hand side)795

2. LinearSystemSetup – setup of the linear equations solver, with two sub-phases:796

2.1. EvaluateJacobian – evaluation of a Jacobian matrix797

2.2. ComputePreconditioner – computation of a preconditioner using the Jacobian data798

3. LinearSystemSolve – solution of a linear systems of equation, with two sub-phases:799

3.1. ApplyPreconditioner – application of the preconditioner to solve the linear system800

3.2. JacobianVectorProduct – Jacobian-vector multiplication, required in every iteration801

of the linear solver (in SUNDIALS the difference quotient approximation is used802

and requires an additional call to the EvaluateEquations function)803

4. InterProcessDataExchange – exchange of adjacent unknowns between processing elements,804

required before every call to EvaluateEquations.805

The total integration time, the duration of individual phases of the numerical solution and the806

percentage of the total integration time in individual phases are presented in Table 6 for Case 1807

and Table 7 for Case 2.808

The speed-ups of individual phases of the numerical solution, the maximum theoretical809

overall speed-ups and the achieved overall simulation speed-ups are given in Table 8 for Case 1810

and Table 9 for Case 2. The maximum theoretical speed-ups for evaluation of model equations811

can be estimated using the maximum peak performance for individual platforms. For instance,812

for C1-CL and C2-CL runs the theoretical speed-up is 36.56 GFLOPs/(34.32 GFLOPs/8 cores)813

= 8.52, for C1-OMP and C2-OMP runs it is 8.00 (the number of cores), while for C1-CLx2814

and C2-CLx2 runs it is 8.52 (GPU) + 8.00 (CPU) = 16.52. The maximum theoretical overall815

simulation speed-ups can be calculated from the Amdahl’s law using the data from Table 6 and816

7 and the maximum peak performance for individual platforms: 1/
(
1− p+ p/s

)
, where p is817

the portion of the solution that can be parallelised and s is the maximum theoretical speed-up818

for evaluation of model equations. For runs that utilise OpenMP and OpenCL (only the model819

equations and derivatives are evaluated in parallel) they are: (a) 2.02 for C1-OMP and 3.78820

for C2-OMP, (b) 2.04 for C1-CL and 3.87 for C2-CL, and (c) 2.19 for C1-CLx2 and 4.75 for821

C2-CLx2. The maximum theoretical overall speed-up for the MPI runs can be estimated assuming822

that evaluation of model equations and the linear solution can be parallelised: 4.61 for Case 1823

and 6.14 for Case 2.824
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Figure 8. Case 1: Plot of the concentration u at the bottom-left point (x=0, y=0) - stable regime
(B = 1.7)

Figure 9. Case 1: Plot of the concentration u at the bottom-left point (x=0, y=0) - unstable
regime (B = 3.4)

Figure 10. Case 2: Plot of the concentration c1 at the bottom-left point (x=0, y=30)
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Table 6. Case 1: Execution times for individual phases of the numerical solution

C1-SEQ C1-OMP C1-CL C1-CLx2 C1-MPI
Phase Time, s % Time, s % Time, s % Time, s % Time, s %
EvaluateEquations 211.96 20.53 60.22 11.43 69.56 13.26 54.37 11.27 61.64 15.06
LinearSystemSetup (total) 65.14 6.31 39.06 7.41 33.31 6.35 33.83 7.02 9.71 2.37
EvaluateJacobian 29.85 2.89 9.88 1.87 6.45 1.23 7.16 1.49 6.47 1.58
ComputePreconditioner 35.29 3.42 29.18 5.54 26.86 5.12 26.67 5.53 3.24 0.79
LinearSystemSolve (total) 646.71 62.63 340.19 64.54 339.32 64.69 311.72 64.64 248.43 60.69
ApplyPreconditioner 192.46 18.63 158.78 30.12 146.63 27.96 145.70 30.22 56.88 13.89
JacobianVectorProduct 355.12 34.39 100.91 19.07 116.54 22.21 91.09 19.07 108.38 26.48
InterProcessDataExchange - - - - - - - - 15.54 3.81
Integration (total) 1023.87 522.06 520.05 477.76 407.44

Table 7. Case 2: Execution times for individual phases of the numerical solution

C2-SEQ C2-OMP C2-CL C2-CLx2 C2-MPI
Phase Time, s % Time, s % Time, s % Time, s % Time, s %
EvaluateEquations 570.70 29.57 132.84 20.39 132.58 21.73 95.58 17.58 85.39 17.51
LinearSystemSetup (total) 319.24 16.54 114.81 17.62 76.43 12.53 96.98 17.84 66.47 13.63
EvaluateJacobian 270.21 14.00 72.31 11.10 33.69 5.52 52.52 9.66 52.61 10.79
ComputePreconditioner 49.03 2.54 42.50 6.52 42.74 7.01 44.46 8.18 13.86 2.84
LinearSystemSolve (total) 956.58 49.56 328.86 50.48 325.11 53.29 275.08 50.59 287.82 59.03
ApplyPreconditioner 83.15 4.31 73.67 11.30 70.30 11.52 72.66 13.37 40.41 8.29
JacobianVectorProduct 781.10 40.47 181.82 27.91 181.78 29.79 131.08 24.11 173.82 35.66
InterProcessDataExchange - - - - - - - - 11.70 2.39
Integration (total) 1930.08 651.47 610.11 543.66 487.54

Table 8. Case 1: Speed-ups for individual phases of the numerical solution

Phase C1-OMP C1-CL C1-CLx2 C1-MPI
EvaluateEquations 3.52 3.05 3.90 3.36
EvaluateJacobian 3.02 4.63 4.17 4.36
ComputePreconditioner - - - 10.29
ApplyPreconditioner - - - 3.40
JacobianVectorProduct 3.52 3.05 3.90 3.36
Max. theoretical overall speed-up 2.02 2.04 2.19 4.61
Overall speed-up 1.96 (97%) 1.97 (96%) 2.17 (98%) 2.51 (55%)
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Table 9. Case 2: Speed-ups for individual phases of the numerical solution

Phase C2-OMP C2-CL C2-CLx2 C2-MPI
EvaluateEquations 4.30 4.30 5.97 4.18
EvaluateJacobian 3.74 8.02 5.14 3.72
ComputePreconditioner - - - 2.56
ApplyPreconditioner - - - 1.66
JacobianVectorProduct 4.30 4.30 5.96 4.18
Max. theoretical overall speed-up 3.78 3.87 4.75 6.14
Overall speed-up 2.96 (78%) 3.16 (82%) 3.55 (75%) 3.96 (64%)

DISCUSSION825

Comparison of the numerical results between the OpenCS model and the original SUNDIALS826

IDAS (for Case 1, Fig. 8 and 9) and CVodes (for Case 2, Fig. 10) models shows a good827

agreement. The observed small variations can be attributed to the internal implementation details:828

SUNDIALS models use different (and less efficient) preconditioners and, in addition, a different829

discretisation method has been applied to the advection term in Case 2.830

The overall performance is in the following order for both cases: sequential < OpenMP <831

OpenCL (GPU) < OpenCL (CPU+GPU) < MPI implementations (Table 8 and 9) and agree well832

with the theoretical limits. The achieved overall simulation speed-ups in Case 1 are 1.96, 1.97,833

2.17 and 2.51 for C1-OMP, C1-CL, C1-CLx2 and C1-MPI runs, respectively (97, 96, 98 and834

55% of the maximum theoretical overall speed-up, respectively). In Case 2 the achieved overall835

simulation speed-ups are 2.96, 3.16, 3.55 and 3.96 for C2-OMP, C2-CL, C2-CLx2 and C2-MPI836

runs, respectively (78, 82, 75 and 64% of the maximum theoretical overall speed-up, respectively).837

In the OpenMP and the OpenCL runs the simulation is carried out on a single processor and838

only evaluation of model equations is parallelised. Here, the OpenCL implementation performs839

faster since the NVidia GPU device offers a higher maximum peak performance (36.56 GFLOPs)840

than the eight Intel cores (34.32 GFLOPs). The reason for somewhat low overall speed-ups in841

single processor simulations (especially in Case 1) is that both cases are dominated by the time842

for solution of linear systems (62.63% of the total integration time in C1-SEQ and 49.56% in843

C2-SEQ run, Table 6 and 7). The main reason is a costly Jacobian-vector multiplication phase844

required in every iteration of the linear solver: the SUNDIALS GMRES solver uses a difference845

quotient approximation of the Jacobian and requires 34.39% of the total integration time in846

C1-SEQ and 40.47% in C2-SEQ run. As expected, the best performance is achieved in C1-MPI847

and C2-MPI runs where the whole system is partitioned into eight sub-systems and independently848

simulated. Again, the overall simulation speed-ups are lower than the maximum theoretical since849

not all phases of the numerical solution can be parallelised, the performance of individual phases850

of the numerical solution does not scale linearly with the number of processors and there is an851

additional cost for inter-process data exchange between the processing elements (during the linear852

algebra operations and before every evaluation of model equations).853

The speed-ups in the EvaluateEquations phase are 3.52, 3.05, 3.90 and 3.36 for C1-OMP,854

C1-CL, C1-CLx2 and C1-MPI runs, respectively (Table 8) and 4.30, 4.30, 5.97 and 4.18 for855

C2-OMP, C2-CL, C2-CLx2 and C2-MPI runs, respectively (Table 9). The speed-ups in the856

EvaluateJacobian phase are 3.02, 4.63, 4.17 and 4.36 for C1-OMP, C1-CL, C1-CLx2 and C1-MPI857

runs, respectively (Table 8) and 3.74, 8.02, 5.14 and 3.72 for C2-OMP, C2-CL, C2-CLx2 and858
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C2-MPI runs, respectively (Table 9). The maximum theoretical speed-up is 8.00 for OpenMP859

and MPI runs, 8.52 for OpenCL runs and 16.52 for heterogeneous OpenCL. In Nikolić (2018)860

it has been shown that the achieved speed-ups are in general higher in these two phases. The861

reason is that much more complex expressions for model equations arising from the finite element862

discretisation are used than in the finite difference equations studied in this work. Thus, a much863

larger amount of computation is required and the hardware is better utilised. The speed-ups for864

evaluation of the Jacobian are higher than speed-ups for evaluation of equations since a larger865

number of evaluations are required and the hardware is again better utilised. The speed-ups in866

the ComputePreconditioner phase are 10.29 for C1-MPI run (Table 8) and 2.56 for C2-MPI run867

(Table 9). The speed-ups in the ApplyPreconditioner phase are 3.40 for C1-MPI run (Table 8)868

and 1.66 for C2-MPI run (Table 9). The time for inter-process data exchange is only 3.81% of the869

total integration time in Case 1 and 2.39% in Case 2 and does not significantly affect the overall870

performance. The fact is that partitioning of the overall ODE/DAE system into a number of871

ODE/DAE sub-systems has the largest effect on the evaluation of model equations and derivatives872

(eight times lower the number of equations in every PE) and to a lesser degree on the solution of873

linear systems (although the linear systems are eight times smaller in every PE the performance874

does not scale linearly with the size of the problem).875

CONCLUSIONS876

The main ideas, the key concepts, the components, the algorithms and the API of the OpenCS877

framework are presented in this work. OpenCS provides an universal platform for modelling878

of problems described by systems of differential and algebraic equations, parallel evaluation of879

model equations on diverse types of computing devices, model exchange and parallel simulation880

on shared and distributed memory systems (including heterogeneous systems).881

The framework offers the numerous benefits. For instance, model equations are transformed882

into the postfix notation expression stacks, stored as an array of binary data and evaluated using883

a stack machine. This way, the equations can be evaluated on virtually all computing devices884

with no additional processing (including heterogeneous systems) and switching to a different885

computing device is controlled by an input parameter. The OpenMP API is used for parallel886

evaluation on general purpose processors and the OpenCL framework is used for parallelisation887

on streaming processors and heterogeneous systems. The low-level model specification data888

structures, stored as files in binary format, are used as an input for parallel simulations on all889

platforms and provide a simple platform-independent binary interface for model exchange. The890

partitioning algorithm can accurately balance the computation and memory loads in all important891

phases of the numerical solution. Since a single simulation software and a common model-892

specification are utilised on all platforms, OpenCS models can be used for benchmarks between893

different simulators, ODE/DAE solvers, individual computing devices and high performance894

computing systems.895

The capabilities of the framework are illustrated using two large scale problems. The overall896

performance and the performance of four main and four sub-phases of the numerical solution897

have been analysed. For simulations carried out on a single processor the OpenMP API and the898

OpenCL frameworks have been utilised for parallelisation of model equations. The MPI interface899

has been used for simulation on message-passing multiprocessors. It has been observed that the900

overall simulation performance is in the following order: sequential < OpenMP < OpenCL (single901

device) < OpenCL (heterogeneous CPU+GPU) < MPI implementations. As it has been expected,902
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the MPI simulations offer the best performance since the whole ODE/DAE system is partitioned903

into a specified number of ODE/DAE sub-systems and independently simulated. However, the904

overall simulation speed-up is lower than the maximum theoretical: the performance of individual905

phases of the numerical solution does not scale linearly with the number of processors and there906

is an additional cost for inter-process data exchange between the processing elements.907

The future work will focus on applications of the framework to large-scale multi-scale908

and multi-physics problems, further improvement of the performance and reduction of the909

memory requirements, implementation of problem-specific graph partitioners, new solvers and910

preconditioner libraries, and Compute Stack Evaluator implementations for additional types of911

computing devices (such as Xeon Phi and FPGA).912
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